Reputation: 507
I would like to generate all the possible adjacency matrices (zero diagonale) of an undirected graph of n
nodes.
For example, with no relabeling for n=3
we get 23(3-1)/2 = 8 possible network configurations (or adjacency matrices).
One solution that works for n = 3
(and which I think is quite stupid) would be the following:
n = 3;
A = [];
for k = 0:1
for j = 0:1
for i = 0:1
m = [0 , i , j ; i , 0 , k ; j , k , 0 ];
A = [A, m];
end
end
end
Also I though of the following which seems to be faster but something is wrong with my indexing since 2 matrices are missing:
n = 3
C = [];
E = [];
A = zeros(n);
for i = 1:n
for j = i+1:n
A(i,j) = 1;
A(j,i) = 1;
C = [C,A];
end
end
B = ones(n);
B = B- diag(diag(ones(n)));
for i = 1:n
for j = i+1:n
B(i,j) = 0;
B(j,i) = 0;
E = [E,B];
end
end
D = [C,E]
Is there a faster way of doing this?
Upvotes: 4
Views: 317
Reputation: 35109
I would definitely generate the off-diagonal elements of the adjacency matrices with binary encoding:
n = 4; %// number of nodes
m = n*(n-1)/2;
offdiags = dec2bin(0:2^m-1,m)-48; %//every 2^m-1 possible configurations
If you have the Statistics and Machine Learning Toolbox, then squareform
will easily create the matrices for you, one by one:
%// this is basically a for loop
tmpcell = arrayfun(@(k) squareform(offdiags(k,:)),1:size(offdiags,1),...
'uniformoutput',false);
A = cat(2,tmpcell{:}); %// concatenate the matrices in tmpcell
Although I'd consider concatenating along dimension 3
, then you can see each matrix individually and conveniently.
Alternatively, you can do the array synthesis yourself in a vectorized way, it's probably even quicker (at the cost of more memory):
A = zeros(n,n,2^m);
%// lazy person's indexing scheme:
[ind_i,ind_j,ind_k] = meshgrid(1:n,1:n,1:2^m);
A(ind_i>ind_j) = offdiags.'; %'// watch out for the transpose
%// copy to upper diagonal:
A = A + permute(A,[2 1 3]); %// n x n x 2^m matrix
%// reshape to n*[] matrix if you wish
A = reshape(A,n,[]); %// n x (n*2^m) matrix
Upvotes: 5