Reputation: 85
I have a list of dataframes with the following format that I want to run a conditional through:
IDn = c("ChrM", "ChrM" ,"ChrM" ,"ChrM" ,"ChrM")
posn = c(2,5,7,8,9)
met = c(2,0,4,1,0)
nmet = c(2,1,0,2,0)
bd = c(3,3,0,8,10)
dfp = data.frame(IDn,posn,met,nmet,bd)
IDn posn met nmet bd
1 ChrM 2 2 2 3
2 ChrM 5 0 1 3
3 ChrM 7 4 0 0
4 ChrM 8 1 2 8
5 ChrM 9 0 0 10
dfp[crit] <- (dfp[met]+dfp[nmet]>=4) & (dfp[met]>=dfp[bd])
The thing is that every df within the list has a different name, stored under names2
names2[crit] <- as.numeric((names2[met]+names2[nmet]>=4) & (names2[met]>=names2[bd]))
[crit]
being a new column to store a 0 or 1 value. I tried to run this with lapply
, but had had no luck thus far. Any advice?
Upvotes: 2
Views: 49
Reputation: 886938
We can use transform
without any anonymous function
lapply(dflist, transform, crit = (met + nmet)>=4 & (met >=bd))
# $d1
# IDn posn met nmet bd crit
#1 ChrM 2 2 2 3 FALSE
#2 ChrM 5 0 1 3 FALSE
#3 ChrM 7 4 0 0 TRUE
#4 ChrM 8 1 2 8 FALSE
#5 ChrM 9 0 0 10 FALSE
#$d2
# IDn posn met nmet bd crit
#1 ChrM 2 2 2 3 FALSE
#2 ChrM 5 0 1 3 FALSE
#3 ChrM 7 4 0 0 TRUE
#4 ChrM 8 1 2 8 FALSE
#5 ChrM 9 0 0 10 FALSE
Another option using dplyr/purrr
would be
library(dplyr)
library(purrr)
dflist %>%
map(~mutate(., crit=(met+nmet)>=4 & (met >=bd)))
#$d1
# IDn posn met nmet bd crit
#1 ChrM 2 2 2 3 FALSE
#2 ChrM 5 0 1 3 FALSE
#3 ChrM 7 4 0 0 TRUE
#4 ChrM 8 1 2 8 FALSE
#5 ChrM 9 0 0 10 FALSE
#$d2
# IDn posn met nmet bd crit
#1 ChrM 2 2 2 3 FALSE
#2 ChrM 5 0 1 3 FALSE
#3 ChrM 7 4 0 0 TRUE
#4 ChrM 8 1 2 8 FALSE
#5 ChrM 9 0 0 10 FALSE
dflist <- list(d1=dfp, d2=dfp)
Upvotes: 0
Reputation: 83215
Not sure what is going wrong with your lapply
-code (it is always good to include the code you tried into your question), but the following should work:
# creating a list
dflist <- list(d1=dfp, d2=dfp)
# updating the dataframes in your list
dflist <- lapply(dflist, function(x) {x$crit <- (x$met + x$nmet >= 4) & (x$met>=x$bd); x})
# or:
dflist <- lapply(dflist, function(x) {cbind(x, crit = (x$met + x$nmet >= 4) & (x$met>=x$bd))})
which results in the following list:
> dflist
$d1
IDn posn met nmet bd crit
1 ChrM 2 2 2 3 FALSE
2 ChrM 5 0 1 3 FALSE
3 ChrM 7 4 0 0 TRUE
4 ChrM 8 1 2 8 FALSE
5 ChrM 9 0 0 10 FALSE
$d2
IDn posn met nmet bd crit
1 ChrM 2 2 2 3 FALSE
2 ChrM 5 0 1 3 FALSE
3 ChrM 7 4 0 0 TRUE
4 ChrM 8 1 2 8 FALSE
5 ChrM 9 0 0 10 FALSE
In response to your comment:
As you are working with data.table, you could also use:
dflist <- lapply(dflist, function(x) x[, crit := (met + nmet >= 4) & (met>=bd)])
Upvotes: 3