Reputation: 8315
I have a dataset class defined such that it has a list of events and, for each event, there is a dictionary of variable values. The dataset can be used to access events easily using an index, can be used to shuffle events, can be used to preprocess all of the data (rescale it etc.) and can be used to easily present the data in an ASCII table in the terminal.
I want now to be able to add datasets. This means that I would like to be able to combine two datasets that have, for each event, identical sets of variables. I have attempted this, but when I try to add a dataset to another dataset, the columns get screwed up somehow.
So, suppose I have two datasets that start in the following ways:
|-----------------------------------------------------------------------------------------------------------|
|index|jet_2|nJets|jet_2|class|el_1_|jet_1|jet_2|nBTag|jet_1|met |jet_2|el_1_|jet_1|el_1_|Centr|jet_1|met_p|
| |_phi | |_e | |phi |_phi |_pt |s |_pt | |_eta |pt |_e |eta |ality|_eta |hi |
| | | | | | | | | | | | | | | |_all | | |
|-----------------------------------------------------------------------------------------------------------|
|1 |-2.64|5 |10827|0 |-1.20|0.636|10787|1 |18888|64427|-0.02|77078|19106|-0.99|0.905|-0.01|2.521|
| |34259| |3.75 | |04392|89154|1.367| |1.765|.3164|75653|.5546|0.656|58823|95465|71776|60954|
| |4147 | | | |1471 |3865 |188 | |625 |062 |58206|875 |25 |9193 |8985 |15314|475 |
| | | | | | | | | | | |6 | | | | |7 | |
|-----------------------------------------------------------------------------------------------------------|
|2 |0.034|4 |63592|0 |2.591|-0.59|33142|2 |91993|23694|-1.26|91370|16520|-0.83|0.608|-1.18|-2.26|
| |82930| |.6328| |75348|62130|.2421| |.4843|.5468|29560|.1406|1.25 |01038|56819|74392|86488|
| |36222| |125 | |282 |42736|875 | |75 |75 |2322 |25 | |74207|1528 |0326 |6284 |
|-----------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------|
|index|jet_2|nJets|jet_2|class|el_1_|jet_1|jet_2|nBTag|jet_1|met |jet_2|el_1_|jet_1|el_1_|Centr|jet_1|met_p|
| |_phi | |_e | |phi |_phi |_pt |s |_pt | |_eta |pt |_e |eta |ality|_eta |hi |
| | | | | | | | | | | | | | | |_all | | |
|-----------------------------------------------------------------------------------------------------------|
|1 |1.395|5 |16180|1 |-1.09|-1.73|76499|2 |11393|82580|-1.37|41392|11862|0.469|0.562|0.270|1.562|
| |24650| |8.828| |14194|03662|.0625| |7.421|.4062|69830|.0585|4.257|71315|93624|53004|49403|
| |574 | |125 | |5839 |3001 | | |875 |5 |4653 |938 |812 |1455 |6395 |5033 |954 |
|-----------------------------------------------------------------------------------------------------------|
|2 |1.376|7 |16091|1 |0.547|-2.22|13746|2 |23603|58867|0.560|11221|33601|0.371|0.763|0.886|-0.62|
| |49536| |5.296| |91748|10381|2.937| |9.062|.9648|20069|8.468|2.562|41576|15855|64764|06557|
| |133 | |875 | |5237 |031 |5 | |5 |438 |1223 |75 |5 |4093 |9799 |1659 |7507 |
|-----------------------------------------------------------------------------------------------------------|
If I try to add these datasets, I get the following:
|-----------------------------------------------------------------------------------------------------------|
|index|el_1_|nJets|jet_2|jet_2|jet_1|jet_2|nBTag|jet_1|met |jet_2|jet_1|el_1_|jet_1|el_1_|class|met_p|Centr|
| |phi | |_e |_phi |_phi |_pt |s |_pt | |_eta |_eta |pt |_e |eta | |hi |ality|
| | | | | | | | | | | | | | | | | |_all |
|-----------------------------------------------------------------------------------------------------------|
|1 |-1.20|5 |10827|-2.64|0.636|10787|1 |18888|64427|-0.02|-0.01|77078|19106|-0.99|0 |2.521|0.905|
| |04392| |3.75 |34259|89154|1.367| |1.765|.3164|75653|71776|.5546|0.656|58823| |60954|95465|
| |1471 | | |4147 |3865 |188 | |625 |062 |58206|15314|875 |25 |9193 | |475 |8985 |
| | | | | | | | | | |6 |7 | | | | | | |
|-----------------------------------------------------------------------------------------------------------|
|2 |0.034|4 |63592|0 |2.591|-0.59|33142|2 |91993|23694|-1.26|91370|16520|-0.83|0.608|-1.18|-2.26|
| |82930| |.6328| |75348|62130|.2421| |.4843|.5468|29560|.1406|1.25 |01038|56819|74392|86488|
| |36222| |125 | |282 |42736|875 | |75 |75 |2322 |25 | |74207|1528 |0326 |6284 |
|-----------------------------------------------------------------------------------------------------------|
You can see that something strange is happening with the ordering of the columns. Can anyone see why this is? Can you see how to fix it?
The dataset class is as follows:
class Dataset(object):
def __init__(
self
):
self._index = 0
self._data = {}
def index(
number = None
):
if number is not None:
self._index = number
return self._index
def indices(
self
):
return [index for index in self._data]
def variable(
self,
index = None,
name = None,
value = None
):
if index is not None:
self._index = index
if name is not None:
if value is not None:
try:
self._data[self._index][name] = value
except:
self._data[self._index] = {}
self._data[self._index][name] = value
return self._data[self._index][name]
def variables(
self,
index = 0
):
return [
variable for variable, value in self._data[self._index].iteritems()
]
def values(
self,
name = None
):
return [self._data[index][name] for index in self.indices()]
def table(
self
):
table_contents = ["index"]
table_contents.extend(self.variables())
table_contents = [table_contents]
for index in self.indices():
values = [
str(self.variable(
name = name,
index = index
)) for name in self.variables()]
row = [str(index)]
row.extend(values)
table_contents.append(row)
return pyprel.Table(
contents = table_contents
)
def normalize(
self,
name = None,
summation = None
):
values_raw = self.values(name = name)
values_normalized = normalize(
values_raw,
summation = summation
)
for index_normalized, index in enumerate(self.indices()):
self.variable(
index = index,
name = name,
value = values_normalized[index_normalized]
)
def normalize_all(
self
):
for name in self.variables():
self.normalize(name = name)
def preprocess(
self,
name = None
):
from sklearn import preprocessing
values_raw = self.values(name = name)
values_preprocessed = list(preprocessing.scale(values_raw))
for index_preprocessed, index in enumerate(self.indices()):
self.variable(
index = index,
name = name,
value = values_preprocessed[index_preprocessed]
)
def preprocess_all(
self,
skip_variables = ["class"]
):
for name in self.variables():
if name not in skip_variables:
self.preprocess(name = name)
def shuffle(
self,
name = None,
seed = 100
):
random.seed(seed)
values = self.values(name = name)
random.shuffle(values)
for index_shuffled, index in enumerate(self.indices()):
self.variable(
index = index,
name = name,
value = values[index_shuffled]
)
def shuffle_all(
self,
seed = 100
):
for name in self.variables():
self.shuffle(
name = name,
seed = seed
)
def add(
self,
dataset = None
):
index_current_maximum = max(self.indices())
for index_offset, index in enumerate(dataset.indices()):
for name in dataset.variables():
self.variable(
index = index_current_maximum + 1 + index_offset,
name = name,
value = dataset.variable(
index = index,
name = name
)
)
Upvotes: 0
Views: 34
Reputation: 9620
Order is not guaranteed in dict
iteration. If you want your keys in a certain order, you will have to impose it. You can do that by including a list of variable names in the object definition. Or if consistently alphabetical is good enough, you could just
def variables(self, index = 0):
varsrc = self._data[index]
return sorted(varsrc.keys())
(Note that I actually used the passed index, which you code did not.)
As a separate issue, if you want to extract keys from a dict
, it makes more sense to pass the dict
than to pass an index that allows you to find the dict
.
Upvotes: 1