Reputation: 20558
How do I check if a string represents a numeric value in Python?
def is_number(s):
try:
float(s)
return True
except ValueError:
return False
The above works, but it seems clunky.
If what you are testing comes from user input, it is still a string even if it represents an int
or a float
. See How can I read inputs as numbers? for converting the input, and Asking the user for input until they give a valid response for ensuring that the input represents an int
or float
(or other requirements) before proceeding.
Upvotes: 2010
Views: 1794663
Reputation: 133
def is_number(x:str):
x = x.replace(".", "", 1)
if x.startswith("-"):
x = x[1:]
return x.isdigit()
if __name__ == '__main__':
for si in ["123.456", "-123.456", "123", "-123", "--123", "a123", "123a"]:
print(si, is_number(si))
Upvotes: 0
Reputation: 151
My short answer is: may be duplicated one, sorry for that ... def is_float(s): if s.isdigit(): return False try: float(s) return True except Exception as e: return False
Upvotes: 0
Reputation:
TL;DR The best solution is s.replace('.','',1).isdigit()
I did some benchmarks comparing the different approaches
def is_number_tryexcept(s):
""" Returns True if string is a number. """
try:
float(s)
return True
except ValueError:
return False
import re
def is_number_regex(s):
""" Returns True if string is a number. """
if re.match("^\d+?\.\d+?$", s) is None:
return s.isdigit()
return True
def is_number_repl_isdigit(s):
""" Returns True if string is a number. """
return s.replace('.','',1).isdigit()
If the string is not a number, the except-block is quite slow. But more importantly, the try-except method is the only approach that handles scientific notations correctly.
funcs = [
is_number_tryexcept,
is_number_regex,
is_number_repl_isdigit
]
a_float = '.1234'
print('Float notation ".1234" is not supported by:')
for f in funcs:
if not f(a_float):
print('\t -', f.__name__)
Float notation ".1234" is not supported by:
is_number_regex
scientific1 = '1.000000e+50' scientific2 = '1e50'
print('Scientific notation "1.000000e+50" is not supported by:') for f in funcs: if not f(scientific1): print('\t -', f.name)
print('Scientific notation "1e50" is not supported by:') for f in funcs: if not f(scientific2): print('\t -', f.name)
Scientific notation "1.000000e+50" is not supported by:
import timeit
test_cases = ['1.12345', '1.12.345', 'abc12345', '12345']
times_n = {f.__name__:[] for f in funcs}
for t in test_cases:
for f in funcs:
f = f.__name__
times_n[f].append(min(timeit.Timer('%s(t)' %f,
'from __main__ import %s, t' %f)
.repeat(repeat=3, number=1000000)))
where the following functions were tested
from re import match as re_match
from re import compile as re_compile
def is_number_tryexcept(s):
""" Returns True if string is a number. """
try:
float(s)
return True
except ValueError:
return False
def is_number_regex(s):
""" Returns True if string is a number. """
if re_match("^\d+?\.\d+?$", s) is None:
return s.isdigit()
return True
comp = re_compile("^\d+?\.\d+?$")
def compiled_regex(s):
""" Returns True if string is a number. """
if comp.match(s) is None:
return s.isdigit()
return True
def is_number_repl_isdigit(s):
""" Returns True if string is a number. """
return s.replace('.','',1).isdigit()
Upvotes: 341
Reputation: 2108
There are already good answers in this post. I wanted to give a slightly different perspective.
Instead of searching for a digit, number or float we could do a negative search for an alphabet. i.e. we could ask the program to look if it is not alphabet.
## Check whether it is not alpha rather than checking if it is digit
print(not "-1.2345".isalpha())
print(not "-1.2345e-10".isalpha())
It will work well if you are sure that your string is a well formed number (Condition 1 and Condition 2 below). However it will fail if the string is not a well formed number by mistake. In such a case it will return a number match even if the string was not a valid number. To take care of this situation, there are many rule based methods must be there. However at this moment, regex comes to my mind. Below are three cases. Please note regex can be much better since I am not a regex expert. Below there are two lists: one for valid numbers and one for invalid numbers. Valid numbers must be picked up while the invalid numbers must not be.
== Condition 1: String is guranteed to be a valid number but 'inf' is not picked ==
Valid_Numbers = ["1","-1","+1","0.0",".1","1.2345","-1.2345","+1.2345","1.2345e10","1.2345e-10","-1.2345e10","-1.2345E10","-inf"]
Invalid_Numbers = ["1.1.1","++1","--1","-1-1","1.23e10e5","--inf"]
################################ Condition 1: Valid number excludes 'inf' ####################################
Case_1_Positive_Result = list(map(lambda x: not x.isalpha(),Valid_Numbers))
print("The below must all be True")
print(Case_1_Positive_Result)
## This check assumes a valid number. So it fails for the negative cases and wrongly detects string as number
Case_1_Negative_Result = list(map(lambda x: not x.isalpha(),Invalid_Numbers))
print("The below must all be False")
print(Case_1_Negative_Result)
The below must all be True
[True, True, True, True, True, True, True, True, True, True, True, True, True]
The below must all be False
[True, True, True, True, True, True]
== Condition 2: String is guranteed to be a valid number and 'inf' is picked ==
################################ Condition 2: Valid number includes 'inf' ###################################
Case_2_Positive_Result = list(map(lambda x: x=="inf" or not x.isalpha(),Valid_Numbers+["inf"]))
print("The below must all be True")
print(Case_2_Positive_Result)
## This check assumes a valid number. So it fails for the negative cases and wrongly detects string as number
Case_2_Negative_Result = list(map(lambda x: x=="inf" or not x.isalpha(),Invalid_Numbers+["++inf"]))
print("The below must all be False")
print(Case_2_Negative_Result)
The below must all be True
[True, True, True, True, True, True, True, True, True, True, True, True, True, True]
The below must all be False
[True, True, True, True, True, True, True]
== Condition 3: String is not guranteed to be a valid number ==
import re
CompiledPattern = re.compile(r"([+-]?(inf){1}$)|([+-]?[0-9]*\.?[0-9]*$)|([+-]?[0-9]*\.?[0-9]*[eE]{1}[+-]?[0-9]*$)")
Case_3_Positive_Result = list(map(lambda x: True if CompiledPattern.match(x) else False,Valid_Numbers+["inf"]))
print("The below must all be True")
print(Case_3_Positive_Result)
## This check assumes a valid number. So it fails for the negative cases and wrongly detects string as number
Case_3_Negative_Result = list(map(lambda x: True if CompiledPattern.match(x) else False,Invalid_Numbers+["++inf"]))
print("The below must all be False")
print(Case_3_Negative_Result)
The below must all be True
[True, True, True, True, True, True, True, True, True, True, True, True, True, True]
The below must all be False
[False, False, False, False, False, False, False]
Upvotes: 1
Reputation: 21230
For non-negative (unsigned) integers only, use isdigit()
:
>>> a = "03523"
>>> a.isdigit()
True
>>> b = "963spam"
>>> b.isdigit()
False
Documentation for isdigit()
: Python2, Python3
For Python 2 Unicode strings:
isnumeric()
.
Upvotes: 1798
Reputation: 195
One fast and simple option is to check the data type:
def is_number(value):
return type(value) in [int, float]
Or if you want to test if the values os a string are numeric:
def isNumber (value):
return True if type(value) in [int, float] else str(value).replace('.','',1).isdigit()
tests:
>>> isNumber(1)
True
>>> isNumber(1/3)
True
>>> isNumber(1.3)
True
>>> isNumber('1.3')
True
>>> isNumber('s1.3')
False
Upvotes: 0
Reputation: 965
I know I'm late to the party, but figured out a solution which wasn't here: This solution follows the EAFP principle in Python
def get_number_from_string(value):
try:
int_value = int(value)
return int_value
except ValueError:
return float(value)
Explanation:
If the value in the string is a float
and I first try to parse it as an int
, it will throw a ValueError
. So, I catch that error and parse the value as float
and return.
Upvotes: 2
Reputation: 1834
For my very simple and very common use-case: is this human written string with keyboard a number
?
I read through most answers, and ended up with:
def isNumeric(string):
result = True
try:
x = float(string)
result = (x == x) and (x - 1 != x)
except ValueError:
result = False
return result
It will return False for (+-)NaN
and (+-)inf
.
You can check it out here: https://trinket.io/python/ce32c0e54e
Upvotes: 0
Reputation: 19
Sorry for the Zombie thread post - just wanted to round out the code for completeness...
# is_number() function - Uses re = regex library
# Should handle all normal and complex numbers
# Does not accept trailing spaces.
# Note: accepts both engineering "j" and math "i" but only the imaginary part "+bi" of a complex number a+bi
# Also accepts inf or NaN
# Thanks to the earlier responders for most the regex fu
import re
ISNUM_REGEXP = re.compile(r'^[-+]?([0-9]+|[0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?[ij]?$')
def is_number(str):
#change order if you have a lot of NaN or inf to parse
if ISNUM_REGEXP.match(str) or str == "NaN" or str == "inf":
return True
else:
return False
# A couple test numbers
# +42.42e-42j
# -42.42E+42i
print('Is it a number?', is_number(input('Gimme any number: ')))
Gimme any number: +42.42e-42j
Is it a number? True
Upvotes: 0
Reputation: 48110
This answer provides step by step guide having function with examples to find the string is:
You may use str.isdigit()
to check whether given string is positive integer.
Sample Results:
# For digit
>>> '1'.isdigit()
True
>>> '1'.isalpha()
False
str.isdigit()
returns False
if the string is a negative number or a float number. For example:
# returns `False` for float
>>> '123.3'.isdigit()
False
# returns `False` for negative number
>>> '-123'.isdigit()
False
If you want to also check for the negative integers and float
, then you may write a custom function to check for it as:
def is_number(n):
try:
float(n) # Type-casting the string to `float`.
# If string is not a valid `float`,
# it'll raise `ValueError` exception
except ValueError:
return False
return True
Sample Run:
>>> is_number('123') # positive integer number
True
>>> is_number('123.4') # positive float number
True
>>> is_number('-123') # negative integer number
True
>>> is_number('-123.4') # negative `float` number
True
>>> is_number('abc') # `False` for "some random" string
False
The above functions will return True
for the "NAN" (Not a number) string because for Python it is valid float representing it is not a number. For example:
>>> is_number('NaN')
True
In order to check whether the number is "NaN", you may use math.isnan()
as:
>>> import math
>>> nan_num = float('nan')
>>> math.isnan(nan_num)
True
Or if you don't want to import additional library to check this, then you may simply check it via comparing it with itself using ==
. Python returns False
when nan
float is compared with itself. For example:
# `nan_num` variable is taken from above example
>>> nan_num == nan_num
False
Hence, above function is_number
can be updated to return False
for "NaN"
as:
def is_number(n):
is_number = True
try:
num = float(n)
# check for "nan" floats
is_number = num == num # or use `math.isnan(num)`
except ValueError:
is_number = False
return is_number
Sample Run:
>>> is_number('Nan') # not a number "Nan" string
False
>>> is_number('nan') # not a number string "nan" with all lower cased
False
>>> is_number('123') # positive integer
True
>>> is_number('-123') # negative integer
True
>>> is_number('-1.12') # negative `float`
True
>>> is_number('abc') # "some random" string
False
PS: Each operation for each check depending on the type of number comes with additional overhead. Choose the version of is_number
function which fits your requirement.
Upvotes: 36
Reputation: 3043
In a most general case for a float, one would like to take care of integers and decimals. Let's take the string "1.1"
as an example.
I would try one of the following:
1.> isnumeric()
word = "1.1"
"".join(word.split(".")).isnumeric()
>>> True
2.> isdigit()
word = "1.1"
"".join(word.split(".")).isdigit()
>>> True
3.> isdecimal()
word = "1.1"
"".join(word.split(".")).isdecimal()
>>> True
Speed:
► All the aforementioned methods have similar speeds.
%timeit "".join(word.split(".")).isnumeric()
>>> 257 ns ± 12 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%timeit "".join(word.split(".")).isdigit()
>>> 252 ns ± 11 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%timeit "".join(word.split(".")).isdecimal()
>>> 244 ns ± 7.17 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
Upvotes: 10
Reputation: 3591
Return
True
if all characters in the string are numeric characters, and there is at least one character,False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.
Return
True
if all characters in the string are decimal characters and there is at least one character,False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.
Both available for string types from Python 3.0.
Upvotes: 7
Reputation: 13759
def is_float(s):
if s is None:
return False
if len(s) == 0:
return False
digits_count = 0
dots_count = 0
signs_count = 0
for c in s:
if '0' <= c <= '9':
digits_count += 1
elif c == '.':
dots_count += 1
elif c == '-' or c == '+':
signs_count += 1
else:
return False
if digits_count == 0:
return False
if dots_count > 1:
return False
if signs_count > 1:
return False
return True
Upvotes: 1
Reputation: 3225
I think your solution is fine, but there is a correct regexp implementation.
There does seem to be a lot of regexp hate towards these answers which I think is unjustified, regexps can be reasonably clean and correct and fast. It really depends on what you're trying to do. The original question was how can you "check if a string can be represented as a number (float)" (as per your title). Presumably you would want to use the numeric/float value once you've checked that it's valid, in which case your try/except makes a lot of sense. But if, for some reason, you just want to validate that a string is a number then a regex also works fine, but it's hard to get correct. I think most of the regex answers so far, for example, do not properly parse strings without an integer part (such as ".7") which is a float as far as python is concerned. And that's slightly tricky to check for in a single regex where the fractional portion is not required. I've included two regex to show this.
It does raise the interesting question as to what a "number" is. Do you include "inf" which is valid as a float in python? Or do you include numbers that are "numbers" but maybe can't be represented in python (such as numbers that are larger than the float max).
There's also ambiguities in how you parse numbers. For example, what about "--20"? Is this a "number"? Is this a legal way to represent "20"? Python will let you do "var = --20" and set it to 20 (though really this is because it treats it as an expression), but float("--20") does not work.
Anyways, without more info, here's a regex that I believe covers all the ints and floats as python parses them.
# Doesn't properly handle floats missing the integer part, such as ".7"
SIMPLE_FLOAT_REGEXP = re.compile(r'^[-+]?[0-9]+\.?[0-9]+([eE][-+]?[0-9]+)?$')
# Example "-12.34E+56" # sign (-)
# integer (12)
# mantissa (34)
# exponent (E+56)
# Should handle all floats
FLOAT_REGEXP = re.compile(r'^[-+]?([0-9]+|[0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?$')
# Example "-12.34E+56" # sign (-)
# integer (12)
# OR
# int/mantissa (12.34)
# exponent (E+56)
def is_float(str):
return True if FLOAT_REGEXP.match(str) else False
Some example test values:
True <- +42
True <- +42.42
False <- +42.42.22
True <- +42.42e22
True <- +42.42E-22
False <- +42.42e-22.8
True <- .42
False <- 42nope
Running the benchmarking code in @ron-reiter's answer shows that this regex is actually faster than the normal regex and is much faster at handling bad values than the exception, which makes some sense. Results:
check_regexp with good floats: 18.001921
check_regexp with bad floats: 17.861423
check_regexp with strings: 17.558862
check_correct_regexp with good floats: 11.04428
check_correct_regexp with bad floats: 8.71211
check_correct_regexp with strings: 8.144161
check_replace with good floats: 6.020597
check_replace with bad floats: 5.343049
check_replace with strings: 5.091642
check_exception with good floats: 5.201605
check_exception with bad floats: 23.921864
check_exception with strings: 23.755481
Upvotes: 7
Reputation: 678
User helper function:
def if_ok(fn, string):
try:
return fn(string)
except Exception as e:
return None
then
if_ok(int, my_str) or if_ok(float, my_str) or if_ok(complex, my_str)
is_number = lambda s: any([if_ok(fn, s) for fn in (int, float, complex)])
Upvotes: 1
Reputation: 391972
Which, not only is ugly and slow
I'd dispute both.
A regex or other string parsing method would be uglier and slower.
I'm not sure that anything much could be faster than the above. It calls the function and returns. Try/Catch doesn't introduce much overhead because the most common exception is caught without an extensive search of stack frames.
The issue is that any numeric conversion function has two kinds of results
C (as an example) hacks around this a number of ways. Python lays it out clearly and explicitly.
I think your code for doing this is perfect.
Upvotes: 786
Reputation:
The input may be as follows:
a="50"
b=50
c=50.1
d="50.1"
The input of this function can be everything!
Finds whether the given variable is numeric. Numeric strings consist of optional sign, any number of digits, optional decimal part and optional exponential part. Thus +0123.45e6 is a valid numeric value. Hexadecimal (e.g. 0xf4c3b00c) and binary (e.g. 0b10100111001) notation is not allowed.
is_numeric function
import ast
import numbers
def is_numeric(obj):
if isinstance(obj, numbers.Number):
return True
elif isinstance(obj, str):
nodes = list(ast.walk(ast.parse(obj)))[1:]
if not isinstance(nodes[0], ast.Expr):
return False
if not isinstance(nodes[-1], ast.Num):
return False
nodes = nodes[1:-1]
for i in range(len(nodes)):
#if used + or - in digit :
if i % 2 == 0:
if not isinstance(nodes[i], ast.UnaryOp):
return False
else:
if not isinstance(nodes[i], (ast.USub, ast.UAdd)):
return False
return True
else:
return False
test:
>>> is_numeric("54")
True
>>> is_numeric("54.545")
True
>>> is_numeric("0x45")
True
is_float function
Finds whether the given variable is float. float strings consist of optional sign, any number of digits, ...
import ast
def is_float(obj):
if isinstance(obj, float):
return True
if isinstance(obj, int):
return False
elif isinstance(obj, str):
nodes = list(ast.walk(ast.parse(obj)))[1:]
if not isinstance(nodes[0], ast.Expr):
return False
if not isinstance(nodes[-1], ast.Num):
return False
if not isinstance(nodes[-1].n, float):
return False
nodes = nodes[1:-1]
for i in range(len(nodes)):
if i % 2 == 0:
if not isinstance(nodes[i], ast.UnaryOp):
return False
else:
if not isinstance(nodes[i], (ast.USub, ast.UAdd)):
return False
return True
else:
return False
test:
>>> is_float("5.4")
True
>>> is_float("5")
False
>>> is_float(5)
False
>>> is_float("5")
False
>>> is_float("+5.4")
True
what is ast?
use str.isdigit() method
>>> a=454
>>> a.isdigit()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'int' object has no attribute 'isdigit'
>>> a="454"
>>> a.isdigit()
True
detect int value:
>>> isinstance("54", int)
False
>>> isinstance(54, int)
True
>>>
detect float:
>>> isinstance("45.1", float)
False
>>> isinstance(45.1, float)
True
Upvotes: 10
Reputation: 618
This code handles the exponents, floats, and integers, wihtout using regex.
return True if str1.lstrip('-').replace('.','',1).isdigit() or float(str1) else False
Upvotes: 2
Reputation: 986
import re
def is_number(num):
pattern = re.compile(r'^[-+]?[-0-9]\d*\.\d*|[-+]?\.?[0-9]\d*$')
result = pattern.match(num)
if result:
return True
else:
return False
>>>: is_number('1')
True
>>>: is_number('111')
True
>>>: is_number('11.1')
True
>>>: is_number('-11.1')
True
>>>: is_number('inf')
False
>>>: is_number('-inf')
False
Upvotes: 2
Reputation: 3934
I wanted to see which method is fastest. Overall the best and most consistent results were given by the check_replace
function. The fastest results were given by the check_exception
function, but only if there was no exception fired - meaning its code is the most efficient, but the overhead of throwing an exception is quite large.
Please note that checking for a successful cast is the only method which is accurate, for example, this works with check_exception
but the other two test functions will return False for a valid float:
huge_number = float('1e+100')
Here is the benchmark code:
import time, re, random, string
ITERATIONS = 10000000
class Timer:
def __enter__(self):
self.start = time.clock()
return self
def __exit__(self, *args):
self.end = time.clock()
self.interval = self.end - self.start
def check_regexp(x):
return re.compile("^\d*\.?\d*$").match(x) is not None
def check_replace(x):
return x.replace('.','',1).isdigit()
def check_exception(s):
try:
float(s)
return True
except ValueError:
return False
to_check = [check_regexp, check_replace, check_exception]
print('preparing data...')
good_numbers = [
str(random.random() / random.random())
for x in range(ITERATIONS)]
bad_numbers = ['.' + x for x in good_numbers]
strings = [
''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(random.randint(1,10)))
for x in range(ITERATIONS)]
print('running test...')
for func in to_check:
with Timer() as t:
for x in good_numbers:
res = func(x)
print('%s with good floats: %s' % (func.__name__, t.interval))
with Timer() as t:
for x in bad_numbers:
res = func(x)
print('%s with bad floats: %s' % (func.__name__, t.interval))
with Timer() as t:
for x in strings:
res = func(x)
print('%s with strings: %s' % (func.__name__, t.interval))
Here are the results with Python 2.7.10 on a 2017 MacBook Pro 13:
check_regexp with good floats: 12.688639
check_regexp with bad floats: 11.624862
check_regexp with strings: 11.349414
check_replace with good floats: 4.419841
check_replace with bad floats: 4.294909
check_replace with strings: 4.086358
check_exception with good floats: 3.276668
check_exception with bad floats: 13.843092
check_exception with strings: 15.786169
Here are the results with Python 3.6.5 on a 2017 MacBook Pro 13:
check_regexp with good floats: 13.472906000000009
check_regexp with bad floats: 12.977665000000016
check_regexp with strings: 12.417542999999995
check_replace with good floats: 6.011045999999993
check_replace with bad floats: 4.849356
check_replace with strings: 4.282754000000011
check_exception with good floats: 6.039081999999979
check_exception with bad floats: 9.322753000000006
check_exception with strings: 9.952595000000002
Here are the results with PyPy 2.7.13 on a 2017 MacBook Pro 13:
check_regexp with good floats: 2.693217
check_regexp with bad floats: 2.744819
check_regexp with strings: 2.532414
check_replace with good floats: 0.604367
check_replace with bad floats: 0.538169
check_replace with strings: 0.598664
check_exception with good floats: 1.944103
check_exception with bad floats: 2.449182
check_exception with strings: 2.200056
Upvotes: 10
Reputation: 262
I have a similar problem. Instead of defining a isNumber function, I want to convert a list of strings to floats, something that in high-level terms would be:
[ float(s) for s in list if isFloat(s)]
It is a given we can not really separate the float(s) from the isFloat(s) functions: these two results should be returned by the same function. Also, if float(s) fails, the whole process fails, instead of just ignoring the faulty element. Plus, "0" is a valid number and should be included in the list. When filtering out bad elements, be certain not to exclude 0.
Therefore, the above comprehension must be modified somehow to:
I propose a solution inspired in the Nullable numerical types of C#. These types are internally represented by a struct that has the numerical value and adds a boolean indicating if the value is valid:
def tryParseFloat(s):
try:
return(float(s), True)
except:
return(None, False)
tupleList = [tryParseFloat(x) for x in list]
floats = [v for v,b in tupleList if b]
Upvotes: -2
Reputation: 48815
For strings of non-numbers, try: except:
is actually slower than regular expressions. For strings of valid numbers, regex is slower. So, the appropriate method depends on your input.
If you find that you are in a performance bind, you can use a new third-party module called fastnumbers that provides a function called isfloat. Full disclosure, I am the author. I have included its results in the timings below.
from __future__ import print_function
import timeit
prep_base = '''\
x = 'invalid'
y = '5402'
z = '4.754e3'
'''
prep_try_method = '''\
def is_number_try(val):
try:
float(val)
return True
except ValueError:
return False
'''
prep_re_method = '''\
import re
float_match = re.compile(r'[-+]?\d*\.?\d+(?:[eE][-+]?\d+)?$').match
def is_number_re(val):
return bool(float_match(val))
'''
fn_method = '''\
from fastnumbers import isfloat
'''
print('Try with non-number strings', timeit.timeit('is_number_try(x)',
prep_base + prep_try_method), 'seconds')
print('Try with integer strings', timeit.timeit('is_number_try(y)',
prep_base + prep_try_method), 'seconds')
print('Try with float strings', timeit.timeit('is_number_try(z)',
prep_base + prep_try_method), 'seconds')
print()
print('Regex with non-number strings', timeit.timeit('is_number_re(x)',
prep_base + prep_re_method), 'seconds')
print('Regex with integer strings', timeit.timeit('is_number_re(y)',
prep_base + prep_re_method), 'seconds')
print('Regex with float strings', timeit.timeit('is_number_re(z)',
prep_base + prep_re_method), 'seconds')
print()
print('fastnumbers with non-number strings', timeit.timeit('isfloat(x)',
prep_base + 'from fastnumbers import isfloat'), 'seconds')
print('fastnumbers with integer strings', timeit.timeit('isfloat(y)',
prep_base + 'from fastnumbers import isfloat'), 'seconds')
print('fastnumbers with float strings', timeit.timeit('isfloat(z)',
prep_base + 'from fastnumbers import isfloat'), 'seconds')
print()
Try with non-number strings 2.39108395576 seconds
Try with integer strings 0.375686168671 seconds
Try with float strings 0.369210958481 seconds
Regex with non-number strings 0.748660802841 seconds
Regex with integer strings 1.02021503448 seconds
Regex with float strings 1.08564686775 seconds
fastnumbers with non-number strings 0.174362897873 seconds
fastnumbers with integer strings 0.179651021957 seconds
fastnumbers with float strings 0.20222902298 seconds
As you can see
try: except:
was fast for numeric input but very slow for an invalid inputfastnumbers
wins in both casesUpvotes: 18
Reputation: 281
I know this is particularly old but I would add an answer I believe covers the information missing from the highest voted answer that could be very valuable to any who find this:
For each of the following methods connect them with a count if you need any input to be accepted. (Assuming we are using vocal definitions of integers rather than 0-255, etc.)
x.isdigit()
works well for checking if x is an integer.
x.replace('-','').isdigit()
works well for checking if x is a negative.(Check - in first position)
x.replace('.','').isdigit()
works well for checking if x is a decimal.
x.replace(':','').isdigit()
works well for checking if x is a ratio.
x.replace('/','',1).isdigit()
works well for checking if x is a fraction.
Upvotes: 15
Reputation: 478
use following it handles all cases:-
import re
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' , '2.3')
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' , '2.')
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' , '.3')
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' , '2.3sd')
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' , '2.3')
Upvotes: -3
Reputation: 196
I also used the function you mentioned, but soon I notice that strings as "Nan", "Inf" and it's variation are considered as number. So I propose you improved version of your function, that will return false on those type of input and will not fail "1e3" variants:
def is_float(text):
try:
float(text)
# check for nan/infinity etc.
if text.isalpha():
return False
return True
except ValueError:
return False
Upvotes: 1
Reputation: 3622
Updated after Alfe pointed out you don't need to check for float separately as complex handles both:
def is_number(s):
try:
complex(s) # for int, long, float and complex
except ValueError:
return False
return True
Previously said: Is some rare cases you might also need to check for complex numbers (e.g. 1+2i), which can not be represented by a float:
def is_number(s):
try:
float(s) # for int, long and float
except ValueError:
try:
complex(s) # for complex
except ValueError:
return False
return True
Upvotes: 49
Reputation: 1037
For int
use this:
>>> "1221323".isdigit()
True
But for float
we need some tricks ;-). Every float number has one point...
>>> "12.34".isdigit()
False
>>> "12.34".replace('.','',1).isdigit()
True
>>> "12.3.4".replace('.','',1).isdigit()
False
Also for negative numbers just add lstrip()
:
>>> '-12'.lstrip('-')
'12'
And now we get a universal way:
>>> '-12.34'.lstrip('-').replace('.','',1).isdigit()
True
>>> '.-234'.lstrip('-').replace('.','',1).isdigit()
False
Upvotes: 34
Reputation: 309
Try this.
def is_number(var):
try:
if var == int(var):
return True
except Exception:
return False
Upvotes: 0
Reputation: 47
I was working on a problem that led me to this thread, namely how to convert a collection of data to strings and numbers in the most intuitive way. I realized after reading the original code that what I needed was different in two ways:
1 - I wanted an integer result if the string represented an integer
2 - I wanted a number or a string result to stick into a data structure
so I adapted the original code to produce this derivative:
def string_or_number(s):
try:
z = int(s)
return z
except ValueError:
try:
z = float(s)
return z
except ValueError:
return s
Upvotes: 3
Reputation: 61
I needed to determine if a string cast into basic types (float,int,str,bool). After not finding anything on the internet I created this:
def str_to_type (s):
""" Get possible cast type for a string
Parameters
----------
s : string
Returns
-------
float,int,str,bool : type
Depending on what it can be cast to
"""
try:
f = float(s)
if "." not in s:
return int
return float
except ValueError:
value = s.upper()
if value == "TRUE" or value == "FALSE":
return bool
return type(s)
Example
str_to_type("true") # bool
str_to_type("6.0") # float
str_to_type("6") # int
str_to_type("6abc") # str
str_to_type(u"6abc") # unicode
You can capture the type and use it
s = "6.0"
type_ = str_to_type(s) # float
f = type_(s)
Upvotes: 5