Reputation: 1553
I have a large (20,000 obs) data.frame containing hourly values and grouped by unique id. I also have a list of dates (each of the dates occurs in the data.frame). I am trying to match the dates to the data.frame, and then extract datetimes that are between + or – a certain time interval from the matching date. For example, in the following data.frame:
setAs("character","myDate", function(from) as.POSIXct(from, "%m/%e/%Y %H:%M", tz="UTC"))
# previous function formats date input as UTC
df <- read.table(textConnection("datetimeUTC id value
'5/1/2013 5:00' 153 0.53
'5/1/2013 6:00' 153 0.46
'5/1/2013 7:00' 153 0.53
'5/1/2013 8:00' 153 0.46
'5/1/2013 9:00' 153 0.44
'5/1/2013 10:00' 153 0.48
'5/1/2013 11:00' 153 0.49
'5/1/2013 12:00' 153 0.49
'5/1/2013 13:00' 153 0.51
'5/1/2013 14:00' 153 0.53
'11/24/2013 9:00' 154 0.45
'11/24/2013 10:00' 154 0.46
'11/24/2013 11:00' 154 0.49
'11/24/2013 12:00' 154 0.55
'11/24/2013 13:00' 154 0.61
'11/24/2013 14:00' 154 0.7
'11/24/2013 15:00' 154 0.74
'11/24/2013 16:00' 154 0.78
'11/24/2013 17:00' 154 0.77
'11/24/2013 18:00' 154 0.79
'8/2/2015 1:00' 240 0.2
'8/2/2015 2:00' 240 0.2
'8/2/2015 3:00' 240 0.2
'8/2/2015 4:00' 240 0.22
'8/2/2015 5:00' 240 0.22
'8/2/2015 6:00' 240 0.27
'8/2/2015 7:00' 240 0.23
'8/2/2015 8:00' 240 0.21
'8/2/2015 9:00' 240 0.22
'8/2/2015 10:00' 240 0.22
'8/2/2015 11:00' 240 0.21
'8/2/2015 12:00' 240 0.21
'8/2/2015 13:00' 240 0.21
'8/2/2015 14:00' 240 0.22
'8/2/2015 15:00' 240 0.24
'8/2/2015 16:00' 240 0.25
'8/2/2015 17:00' 240 0.12
'8/2/2015 18:00' 240 0.32
"), header=TRUE, colClasses=c("myDate", "character", "numeric"))
I want to extract, for each id, all observations that are 2 hours before or after the matching datetime from this key:
key <-read.table(textConnection("
datetimeUTC id
'5/1/2013 9:00' 153
'11/24/2013 14:00' 154
'8/2/2015 5:00' 240
'8/2/2015 15:00' 240"), header=TRUE, colClasses=c("myDate", "character"))
The desired result would look as follows:
result <- read.table(textConnection("datetimeUTC id value
'5/1/2013 7:00' 153 0.53
'5/1/2013 8:00' 153 0.46
'5/1/2013 9:00' 153 0.44
'5/1/2013 10:00' 153 0.48
'5/1/2013 11:00' 153 0.49
'11/24/2013 12:00' 154 0.55
'11/24/2013 13:00' 154 0.61
'11/24/2013 14:00' 154 0.7
'11/24/2013 15:00' 154 0.74
'11/24/2013 16:00' 154 0.78
'8/2/2015 3:00' 240 0.2
'8/2/2015 4:00' 240 0.22
'8/2/2015 5:00' 240 0.22
'8/2/2015 6:00' 240 0.27
'8/2/2015 7:00' 240 0.23
'8/2/2015 13:00' 240 0.21
'8/2/2015 14:00' 240 0.22
'8/2/2015 15:00' 240 0.24
'8/2/2015 16:00' 240 0.25
'8/2/2015 17:00' 240 0.12
"), header=TRUE, colClasses=c("myDate", "character", "numeric"))
Seems like a simple task but I can't seem to get what I want. A couple of things that I have tried.
result <-df[which(df$id == key$id &(df$datetimeUTC >= key$datetimeUTC -2*60*60 |df$datetimeUTC <= key$datetimeUTC + 2*60*60 )),]
library(data.table)
dt <- setDT(df)
dt[dt$datetimeUTC %between% c(dt$datetimeUTC - 2*60*60,dt$datetimeUTC + 2*60*60) ]
Upvotes: 3
Views: 1360
Reputation: 118779
@Tospig's solution is very nice. But now, with the newly implemented non-equi
joins feature in the current development version of data.table, this is quite straightforward:
require(data.table) # v1.9.7+
setDT(df)
setDT(key) ## converting data.frames to data.tables by reference
df[key, .(x.datetimeUTC, i.datetimeUTC, id, value),
on=.(datetimeUTC >= d1, datetimeUTC <= d2), nomatch=0L]
That's it.
Note that this performs a conditional join directly and is therefore both memory efficient (as opposed to performing a cartesian join and then filtering based on a condition) and fast (since the rows matching the given condition is obtained using modified binary search as opposed to the by=.EACHI
looping variant shown in @tospig's answer).
See the installation instructions for devel version here.
Upvotes: 4
Reputation: 8333
A couple of data.table
solutions for you
1. Cartesian Join
join it all together, then filter out the ones you don't want
library(data.table)
dt <- as.data.table(df)
dt_key <- as.data.table(key)
dt_join <- dt[ dt_key, on="id", allow.cartesian=T][difftime(i.datetimeUTC, datetimeUTC, units="hours") <= 2 & difftime(i.datetimeUTC, datetimeUTC, units="hours") >= -2]
# datetimeUTC id value i.datetimeUTC
#1: 2013-05-01 07:00:00 153 0.53 2013-05-01 09:00:00
#2: 2013-05-01 08:00:00 153 0.46 2013-05-01 09:00:00
#3: 2013-05-01 09:00:00 153 0.44 2013-05-01 09:00:00
#4: 2013-05-01 10:00:00 153 0.48 2013-05-01 09:00:00
... etc
2. Condition on EACH I
Making use of an answer to one of my previous questions, specify the condition in j
that EACHI
has to meet in the join.
dt[ dt_key,
{ idx = difftime(i.datetimeUTC, datetimeUTC, units="hours") <= 2 & difftime(i.datetimeUTC, datetimeUTC, units="hours") >= -2
.(datetime = datetimeUTC[idx],
value = value[idx])
},
on=c("id"),
by=.EACHI]
Upvotes: 4
Reputation: 19544
With lubridate
you can do:
library(lubridate)
do.call(rbind, apply(key,1, FUN=function(k)
df[df$id == k['id'] &
df$datetimeUTC >= ymd_hms( k['datetimeUTC']) -hours(2) &
df$datetimeUTC <= ymd_hms(k['datetimeUTC']) +hours(2),]))
1: 2013-05-01 07:00:00 153 0.53
2: 2013-05-01 08:00:00 153 0.46
3: 2013-05-01 09:00:00 153 0.44
4: 2013-05-01 10:00:00 153 0.48
5: 2013-05-01 11:00:00 153 0.49
6: 2013-11-24 12:00:00 154 0.55
7: 2013-11-24 13:00:00 154 0.61
8: 2013-11-24 14:00:00 154 0.70
9: 2013-11-24 15:00:00 154 0.74
10: 2013-11-24 16:00:00 154 0.78
11: 2015-08-02 03:00:00 240 0.20
12: 2015-08-02 04:00:00 240 0.22
13: 2015-08-02 05:00:00 240 0.22
14: 2015-08-02 06:00:00 240 0.27
15: 2015-08-02 07:00:00 240 0.23
16: 2015-08-02 13:00:00 240 0.21
17: 2015-08-02 14:00:00 240 0.22
18: 2015-08-02 15:00:00 240 0.24
19: 2015-08-02 16:00:00 240 0.25
20: 2015-08-02 17:00:00 240 0.12
Upvotes: 1