Reputation: 313
I have a successfully running code listed below to removes stop words from text and also corresponding Part of speech[POS]. But it takes a while to run on large volume around 4 hours. I was thinking if i get rid of the for loops by vectoring, it would speed. But i don't know if its possible or if its useful. I needed help in speeding up code by using a better way.
I can remove stop words using tm packge R tm removeWords stopwords is not removing stopwords but i need to remove the corresponding POS tag, which is not possible in tm package.
Note: I have been able to parallelize the outermost for loop using foreeach to run on 12 cores.
code:
# Reproducible data
# id is to identify the source
# phrase contains original string
# modifiedphrase contains string with stop words removved
id <- c(1,2,3)
phrase <- c("choice_for_selection","accordingly_choices_for_selection", "only_top_selection")
pos <- c("NN JJ NN","NN JJ NN NN", "NNS NN NNS") #fake part of speech
df <- as.data.frame(cbind(id,phrase,pos))
df<-cbind(df,df$phrase) # creating copy of the phrase to modify it
df<-cbind(df,df$pos) # creating copy of the pos to modify it
colnames(df) <- c("id","phrase","pos","modifiedphrase","modpos")
df$modifiedphrase<-as.character(df$modifiedphrase)
df$modpos<-as.character(df$modpos)
# stop words list
library(tm)
SWList<- stopwords(kind = "SMART")
library(stringr)
#Code to remove stop words in strings
# the first outermost for loop i am able to parallelize using foreach
for(i in 1:length(df[,1])){
tokensplit<-str_split(df[i,"phrase"],"_")[[1]]
possplit<-str_split(df[i,"pos"]," ")[[1]]
change=0
forremoval=NULL
for(j in 1:length(tokensplit)){
if(tokensplit[j] %in% SWList){
change=1
forremoval<-append(forremoval,j)
tmppos<-paste(possplit[-forremoval],collapse=" ")
}
}
if(change==1){
tmp<-paste(tokensplit[-forremoval],collapse="_")
if(length(tmp)==0){
tmp=""
tmppos=""
}
df[i,"modifiedphrase"]=tmp
df[i,"modpos"]=tmppos
}
}
# Final output
print(df)
id phrase pos modifiedphrase modpos
1 1 choice_for_selection NN JJ NN choice_selection NN NN
2 2 accordingly_choices_for_selection NN JJ NN NN choices_selection JJ NN
3 3 only_top_selection NNS NN NNS top_selection NN NNS
>
Upvotes: 1
Views: 544
Reputation: 3141
Here's an sapply version:
# stop words list
library(tm)
SWList <- stopwords(kind = "SMART")
df$modpos <- apply(df[,c('phrase', 'pos')], 1, function(x){
paste(strsplit(x[2],' ')[[1]][!((strsplit(x[1],'_')[[1]])%in%SWList)], collapse=" ")
})
df$modifiedphrase <- sapply(df$modified, function(x) {
paste(setdiff(strsplit(x,"_")[[1]],SWList),collapse="_")
})
I know it's fake data, but you might also want to consider removing the apostrophes in your stopwords:
SWList = gsub('\'','',SWList)
Update
Efficiency check:
(1) Setup data function: So we can setup data before each efficiency check.
setup_data = function(){
id <- c(1,2,3)
phrase <- c("choice_for_selection","accordingly_choices_for_selection", "only_top_selection")
pos <- c("NN JJ NN","NN JJ NN NN", "NNS NN NNS") #fake part of speech
df <- as.data.frame(cbind(id,phrase,pos))
df<-cbind(df,df$phrase) # creating copy of the phrase to modify it
df<-cbind(df,df$pos) # creating copy of the pos to modify it
colnames(df) <- c("id","phrase","pos","modifiedphrase","modpos")
df$modifiedphrase<-as.character(df$modifiedphrase)
df$modpos<-as.character(df$modpos)
return(df)
}
(2) The original For-loop method:
forloop_method = function(){
for(i in 1:length(df[,1])){
tokensplit<-str_split(df[i,"phrase"],"_")[[1]]
possplit<-str_split(df[i,"pos"]," ")[[1]]
change=0
forremoval=NULL
for(j in 1:length(tokensplit)){
if(tokensplit[j] %in% SWList){
change=1
forremoval<-append(forremoval,j)
tmppos<-paste(possplit[-forremoval],collapse=" ")
}
}
if(change==1){
tmp<-paste(tokensplit[-forremoval],collapse="_")
if(length(tmp)==0){
tmp=""
tmppos=""
}
df[i,"modifiedphrase"]=tmp
df[i,"modpos"]=tmppos
}
}
}
(3) Apply method:
apply_method = function(){
df$modpos <- apply(df[,c('phrase', 'pos')], 1, function(x){
paste(strsplit(x[2],' ')[[1]][!((strsplit(x[1],'_')[[1]])%in%SWList)], collapse=" ")
})
df$modifiedphrase <- sapply(df$modified, function(x) {
paste(setdiff(strsplit(x,"_")[[1]],SWList),collapse="_")
})
}
(4) Efficiency in Microseconds using the 'microbenchmark' package:
library(microbenchmark)
df = setup_data()
microbenchmark(forloop_method(), unit='us')
Unit: microseconds
expr min lq mean median uq max neval
forloop_method 884.229 965.2805 1050.775 992.224 1032.69 2680.374 100
df = setup_data()
microbenchmark(apply_method, unit='us')
Unit: microseconds
expr min lq mean median uq max neval
apply_method 0.018 0.025 0.49948 0.026 0.027 45.379 100
1050.775/0.49948 = 2103.738 times speedup on my system.
Upvotes: 1