Reputation: 685
I have a pandas dataframe with over 1000 timestamps (below) that I would like to loop through:
2016-02-22 14:59:44.561776
I'm having a hard time splitting this time stamp into 2 columns- 'date' and 'time'. The date format can stay the same, but the time needs to be converted to CST (including milliseconds).
Thanks for the help
Upvotes: 62
Views: 175403
Reputation: 109528
I'm not sure why you would want to do this in the first place, but if you really must...
df = pd.DataFrame({'my_timestamp': pd.date_range('2016-1-1 15:00', periods=5)})
>>> df
my_timestamp
0 2016-01-01 15:00:00
1 2016-01-02 15:00:00
2 2016-01-03 15:00:00
3 2016-01-04 15:00:00
4 2016-01-05 15:00:00
df['new_date'] = [d.date() for d in df['my_timestamp']]
df['new_time'] = [d.time() for d in df['my_timestamp']]
>>> df
my_timestamp new_date new_time
0 2016-01-01 15:00:00 2016-01-01 15:00:00
1 2016-01-02 15:00:00 2016-01-02 15:00:00
2 2016-01-03 15:00:00 2016-01-03 15:00:00
3 2016-01-04 15:00:00 2016-01-04 15:00:00
4 2016-01-05 15:00:00 2016-01-05 15:00:00
The conversion to CST is more tricky. I assume that the current timestamps are 'unaware', i.e. they do not have a timezone attached? If not, how would you expect to convert them?
For more details:
https://docs.python.org/2/library/datetime.html
How to make a datetime object aware (not naive)
EDIT
An alternative method that only loops once across the timestamps instead of twice:
new_dates, new_times = zip(*[(d.date(), d.time()) for d in df['my_timestamp']])
df = df.assign(new_date=new_dates, new_time=new_times)
EDIT 2023
This is how would do this now:
df = df.assign(
new_date=df["my_timestamp"].dt.date,
new_time=df["my_timestamp"].dt.time
)
In fairness, the assign
method was introduced in version 0.16.0 released March 22, 2015, now long before when I originally replied to this post back in 2016.
Upvotes: 51
Reputation: 137
If your timestamp is a string, you can convert it to pandas timestamp before splitting it.
#convert to pandas timestamp
data["old_date"] = pd.to_datetime(data.old_date)
#split columns
data["new_date"] = data["old_date"].dt.date
data["new_time"] = data["old_date"].dt.time
Upvotes: 0
Reputation: 31662
The easiest way is to use the pandas.Series
dt
accessor, which works on columns with a datetime dtype
(see pd.to_datetime
). For this case, pd.date_range
creates an example column with a datetime dtype
, therefore use .dt.date
and .dt.time
:
df = pd.DataFrame({'full_date': pd.date_range('2016-1-1 10:00:00.123', periods=10, freq='5H')})
df['date'] = df['full_date'].dt.date
df['time'] = df['full_date'].dt.time
In [166]: df
Out[166]:
full_date date time
0 2016-01-01 10:00:00.123 2016-01-01 10:00:00.123000
1 2016-01-01 15:00:00.123 2016-01-01 15:00:00.123000
2 2016-01-01 20:00:00.123 2016-01-01 20:00:00.123000
3 2016-01-02 01:00:00.123 2016-01-02 01:00:00.123000
4 2016-01-02 06:00:00.123 2016-01-02 06:00:00.123000
5 2016-01-02 11:00:00.123 2016-01-02 11:00:00.123000
6 2016-01-02 16:00:00.123 2016-01-02 16:00:00.123000
7 2016-01-02 21:00:00.123 2016-01-02 21:00:00.123000
8 2016-01-03 02:00:00.123 2016-01-03 02:00:00.123000
9 2016-01-03 07:00:00.123 2016-01-03 07:00:00.123000
Upvotes: 18
Reputation: 521
In addition to @Alexander if you want a single liner
df['new_date'],df['new_time'] = zip(*[(d.date(), d.time()) for d in df['my_timestamp']])
Upvotes: 0
Reputation: 4149
Had same problem and this worked for me.
Suppose the date column in your dataset is called "date"
import pandas as pd
df = pd.read_csv(file_path)
df['Dates'] = pd.to_datetime(df['date']).dt.date
df['Time'] = pd.to_datetime(df['date']).dt.time
This will give you two columns "Dates" and "Time" with splited dates.
Upvotes: 74
Reputation: 3489
If your timestamp is a string, you can convert it to a datetime
object:
from datetime import datetime
timestamp = '2016-02-22 14:59:44.561776'
dt = datetime.strptime(timestamp, '%Y-%m-%d %H:%M:%S.%f')
From then on you can bring it to whatever format you like.
Upvotes: 3
Reputation: 32
try this:
def time_date(datetime_obj):
date_time = datetime_obj.split(' ')
time = date_time[1].split('.')
return date_time[0], time[0]
Upvotes: 0
Reputation: 471
If your timestamps are already in pandas format (not string), then:
df["date"] = df["timestamp"].date
dt["time"] = dt["timestamp"].time
If your timestamp is a string, you can parse it using the datetime module:
from datetime import datetime
data1["timestamp"] = df["timestamp"].apply(lambda x: \
datetime.strptime(x,"%Y-%m-%d %H:%M:%S.%f"))
Source: http://pandas.pydata.org/pandas-docs/stable/timeseries.html
Upvotes: 4
Reputation: 559
Try
s = '2016-02-22 14:59:44.561776'
date,time = s.split()
then convert time as needed.
If you want to further split the time,
hour, minute, second = time.split(':')
Upvotes: 1