Reputation: 8015
Assume A follows Exponential distribution; B follows Gamma distribution How to plot the PDF of 0.5*(A+B)
Upvotes: 7
Views: 4203
Reputation: 49670
This is fairly straight forward using the "distr" package:
library(distr)
A <- Exp(rate=3)
B <- Gammad(shape=2, scale=3)
conv <- 0.5*(A+B)
plot(conv)
plot(conv, to.draw.arg=1)
Edit by JD Long
Resulting plot looks like this:
Upvotes: 9
Reputation: 60756
If you're just looking for fast graph I usually do the quick and dirty simulation approach. I do some draws, slam a Gaussian density on the draws and plot that bad boy:
numDraws <- 1e6
gammaDraws <- rgamma(numDraws, 2)
expDraws <- rexp(numDraws)
combined <- .5 * (gammaDraws + expDraws)
plot(density(combined))
output should look a little like this:
Upvotes: 7
Reputation: 7043
Here is an attempt at doing the convolution (which @Jim Lewis refers to) in R. Note that there are probably much more efficient ways of doing this.
lower <- 0
upper <- 20
t <- seq(lower,upper,0.01)
fA <- dexp(t, rate = 0.4)
fB <- dgamma(t,shape = 8, rate = 2)
## C has the same distribution as (A + B)/2
dC <- function(x, lower, upper, exp.rate, gamma.rate, gamma.shape){
integrand <- function(Y, X, exp.rate, gamma.rate, gamma.shape){
dexp(Y, rate = exp.rate)*dgamma(2*X-Y, rate = gamma.rate, shape = gamma.shape)*2
}
out <- NULL
for(ix in seq_along(x)){
out[ix] <-
integrate(integrand, lower = lower, upper = upper,
X = x[ix], exp.rate = exp.rate,
gamma.rate = gamma.rate, gamma.shape = gamma.shape)$value
}
return(out)
}
fC <- dC(t, lower=lower, upper=upper, exp.rate=0.4, gamma.rate=2, gamma.shape=8)
## plot the resulting distribution
plot(t,fA,
ylim = range(fA,fB,na.rm=TRUE,finite = TRUE),
xlab = 'x',ylab = 'f(x)',type = 'l')
lines(t,fB,lty = 2)
lines(t,fC,lty = 3)
legend('topright', c('A ~ exp(0.4)','B ~ gamma(8,2)', 'C ~ (A+B)/2'),lty = 1:3)
Upvotes: 2
Reputation: 45125
I'm not an R programmer, but it might be helpful to know that for independent random variables with PDFs f1(x) and f2(x), the PDF of the sum of the two variables is given by the convolution f1 * f2 (x) of the two input PDFs.
Upvotes: 1