Reputation: 1345
I have wanted to use the Gaussian Mixture Model in Spark 1.5.1 which uses the linalg.mllib.vector rdd .
This is my code
import org.apache.spark.mllib.clustering.GaussianMixture
import org.apache.spark.mllib.clustering.GaussianMixtureModel
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.DataFrameNaFunctions
dummy = dummy.na.drop
var colnames= dummy.columns
var df = dummy
for(x<-colnames)
{
if (dummy.select(x).dtypes(0)._2.equals("StringType") || dummy.select(x).dtypes(0)._2.equals("LongType"))
{ df = df.drop(x)}
}
var colnames = df.columns
var assembler = new VectorAssembler().setInputCols(colnames).setOutputCol("features")
var output = assembler.transform(df)
var temp = output.select("features")
The problem is i am not able to change the feature column into org.apache.spark.mllib.linalg.Vector
rdd
Anyone has an idea how to do this ?
Upvotes: 2
Views: 2658
Reputation: 330073
Spark >= 2.0
Either map:
temp.rdd.map(_.getAs[org.apache.spark.mllib.linalg.Vector]("features"))
or use as
:
temp
.select("features")
.as[Tuple1[org.apache.spark.ml.linalg.Vector]]
.rdd.map(_._1)
Spark < 2.0
Just map
over RDD[Row]
and extract the field:
temp.rdd.map(_.getAs[org.apache.spark.mllib.linalg.Vector]("features"))
Upvotes: 2