Reputation: 9804
I want to filter a Pyspark DataFrame with a SQL-like IN
clause, as in
sc = SparkContext()
sqlc = SQLContext(sc)
df = sqlc.sql('SELECT * from my_df WHERE field1 IN a')
where a
is the tuple (1, 2, 3)
. I am getting this error:
java.lang.RuntimeException: [1.67] failure: ``('' expected but identifier a found
which is basically saying it was expecting something like '(1, 2, 3)' instead of a. The problem is I can't manually write the values in a as it's extracted from another job.
How would I filter in this case?
Upvotes: 58
Views: 120572
Reputation: 2294
from pyspark.sql import SparkSession
import pandas as pd
spark=SparkSession.builder.appName('Practise').getOrCreate()
df_pyspark=spark.read.csv('datasets/myData.csv',header=True,inferSchema=True)
df_spark.createOrReplaceTempView("df") # we need to create a Temp table first
spark.sql("SELECT * FROM df where Departments in ('IOT','Big Data') order by Departments").show()
Upvotes: 0
Reputation: 141
Just a little addition/update:
choice_list = ["foo", "bar", "jack", "joan"]
If you want to filter your dataframe "df", such that you want to keep rows based upon a column "v" taking only the values from choice_list, then
from pyspark.sql.functions import col
df_filtered = df.where( ( col("v").isin (choice_list) ) )
Upvotes: 11
Reputation: 330453
String you pass to SQLContext
it evaluated in the scope of the SQL environment. It doesn't capture the closure. If you want to pass a variable you'll have to do it explicitly using string formatting:
df = sc.parallelize([(1, "foo"), (2, "x"), (3, "bar")]).toDF(("k", "v"))
df.registerTempTable("df")
sqlContext.sql("SELECT * FROM df WHERE v IN {0}".format(("foo", "bar"))).count()
## 2
Obviously this is not something you would use in a "real" SQL environment due to security considerations but it shouldn't matter here.
In practice DataFrame
DSL is a much better choice when you want to create dynamic queries:
from pyspark.sql.functions import col
df.where(col("v").isin({"foo", "bar"})).count()
## 2
It is easy to build and compose and handles all details of HiveQL / Spark SQL for you.
Upvotes: 80
Reputation: 4681
You can also do this for integer columns:
df_filtered = df.filter("field1 in (1,2,3)")
or this for string columns:
df_filtered = df.filter("field1 in ('a','b','c')")
Upvotes: 6
Reputation: 73
A slightly different approach that worked for me is to filter with a custom filter function.
def filter_func(a):
"""wrapper function to pass a in udf"""
def filter_func_(col):
"""filtering function"""
if col in a.value:
return True
return False
return udf(filter_func_, BooleanType())
# Broadcasting allows to pass large variables efficiently
a = sc.broadcast((1, 2, 3))
df = my_df.filter(filter_func(a)(col('field1'))) \
Upvotes: 0
Reputation: 2693
reiterating what @zero323 has mentioned above : we can do the same thing using a list as well (not only set
) like below
from pyspark.sql.functions import col
df.where(col("v").isin(["foo", "bar"])).count()
Upvotes: 36