Reputation: 31
I'm implementing a classification model using TensorFlow
The problem that I'm facing is that my weights and error are not being updated when I run the training step. As a result, my network keeps returning the same results.
I've developed my model based on the MNIST example from the TensorFlow website.
import numpy as np
import tensorflow as tf
sess = tf.InteractiveSession()
#load dataset
dataset = np.loadtxt('char8k.txt', dtype='float', comments='#', delimiter=",")
Y = np.asmatrix( dataset[:,0] )
X = np.asmatrix( dataset[:,1:1201] )
m = 11527
labels = 26
# y is update to 11527x26
Yt = np.zeros((m,labels))
for i in range(0,m):
index = Y[0,i] - 1
Yt[i,index]= 1
Y = Yt
Y = np.asmatrix(Y)
#------------------------------------------------------------------------------
#graph settings
x = tf.placeholder(tf.float32, shape=[None, 1200])
y_ = tf.placeholder(tf.float32, shape=[None, 26])
Wtest = tf.Variable(tf.truncated_normal([1200,26], stddev=0.001))
W = tf.Variable(tf.truncated_normal([1200,26], stddev=0.001))
b = tf.Variable(tf.zeros([26]))
sess.run(tf.initialize_all_variables())
y = tf.nn.softmax(tf.matmul(x,W) + b)
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
Wtest = W
for i in range(10):
print("iteracao:")
print(i)
Xbatch = X[np.random.randint(X.shape[0],size=100),:]
Ybatch = Y[np.random.randint(Y.shape[0],size=100),:]
train_step.run(feed_dict={x: Xbatch, y_: Ybatch})
print("atualizacao de pesos")
print(Wtest==W)#monitora atualizaçao dos pesos
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("precisao:Y")
print accuracy.eval(feed_dict={x: X, y_: Y})
print(" ")
print(" ")
Upvotes: 2
Views: 5195
Reputation: 126154
The issue probably arises from how you initialize the weight matrix, W
. If it is initialized to all zeroes, all of the neurons will follow the same gradient in each step, which leads to the network not training. Replacing the line
W = tf.Variable(tf.zeros([1200,26]))
...with something like
W = tf.Variable(tf.truncated_normal([1200,26], stddev=0.001))
...should cause it to start training.
This question on the CrossValidated site has a good explanation of why you should not initialize all of your weights to zero.
Upvotes: 5