Reputation: 63
I had some interviews recently and it's quite normal to be asked some scale problems. For example, you have a long list of words(dict) and list of characters as the inputs, design an algorithm to find out a shortest word which in dict contains all the chars in the char list. Then the interviewer asked how to scale your algorithm into multiple machines. Another example is you have been designed a traffic light control system for an intersection in a city. How do you scale this control system to the whole city which has many intersections. I always have no idea about this kind of "scale" problems, welcome any suggestions and comments.
Upvotes: 1
Views: 914
Reputation: 903
For the first question, how to search words that contain all the char in the char list that can run on the same time on the different machine. (Not yet the shortest). I will do it with map-reduce
as the base.
First, this problem is actually can run on different machine at the same time. This is because for each word in the database, you can check it on another machine (so to check another word, you didn't have to wait for the previous word or the next word, you can literally send each word to different computer to be checked).
Using map-reduce
, you can map
each word as a value
and then check it if it contain every char in the char list.
Map(Word, keyout, valueout){
//Word comes from dbase, keyout & valueout is input for Reduce
if(check if word contain all char){
sharedOutput(Key, Word)//Basically, you send the word to a shared file.
//The output shared file, should be managed by the 'said like' hadoop
}
}
After this Map
running, you get all the Word that you want from the database locate in shared file. As for the reduce
step, you can actually used some simple step to reduce it based on it length. And tada, you get the shortest one.
As for the second question, multi threading come to my mind. It's actually a problem that not relate to each other. I mean each intersection has its own timer right? So to be able handle tons of intersection, you should use multi threading.
The simple term will be using each core in the processor to control each intersection. Rather then go loop through all intersection on by one. You can alocate them in each core so that the process will be faster.
Upvotes: 0
Reputation: 2158
Your first question is completely different from your second question. In fact the control of traffic lights in cities is a local operation. There are boxes nearby that you can tune and optical sensor on top of the light that detects waiting cars. I guess if you need to optimize for some objective function of flow, you can route information to a server process, then it can become how to scale this server process over multiple machines.
I am no expert in design of distributed algorithm, which spans a whole field of research. But the questions in undergrad interviews usually are not that specialized. After all they are not interviewing a graduate student specializing in those fields. Take your first question as an example, it is quite generic indeed.
Normally these questions involve multiple data structures (several lists and hashtables) interacting (joining, iterating, etc) to solve a problem. Once you have worked out a basic solution, scaling is basically copying that solution on many machines and running them with partitions of the input at the same time. (Of course, in many cases this is difficult if not impossible, but interview questions won't be that hard)
That is, you have many identical workers splitting the input workload and work at the same time, but those workers are processes in different machines. That brings the problem of communication protocol and network latency etc, but we will ignore these to get to the basics.
The most common way to scale is let the workers hold copies of smaller data structures and have them split the larger data structures as workload. In your example (first question), the list of characters is small in size, so you would give each worker a copy of the list, and a portion of the dictionary to work on with the list. Notice that the other way around won't work, because each worker holding a dictionary will consume a large amount of memory in total, and it won't save you anything scaling up.
If your problem gets larger, then you may need more layer of splitting, which also implies you need a way of combining the outputs from the workers taking in the split input. This is the general concept and motivation for the MapReduce
framework and its derivatives.
Hope it helps...
Upvotes: 1