Reputation: 15002
I have downloaded some datas as a sqlite database (data.db) and I want to open this database in python and then convert it into pandas dataframe.
This is so far I have done
import sqlite3
import pandas
dat = sqlite3.connect('data.db') #connected to database with out error
pandas.DataFrame.from_records(dat, index=None, exclude=None, columns=None, coerce_float=False, nrows=None)
But its throwing this error
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 980, in from_records
coerce_float=coerce_float)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 5353, in _to_arrays
if not len(data):
TypeError: object of type 'sqlite3.Connection' has no len()
How to convert sqlite database to pandas dataframe
Upvotes: 121
Views: 152788
Reputation: 717
If data.db
is your SQLite database and table_name
is one of its tables, then you can do:
import pandas as pd
df = pd.read_sql_table('table_name', 'sqlite:///data.db')
No other imports needed.
Upvotes: 7
Reputation: 726
Parsing a sqlite .db into a dictionary of dataframes without knowing the table names:
def read_sqlite(dbfile):
import sqlite3
from pandas import read_sql_query, read_sql_table
with sqlite3.connect(dbfile) as dbcon:
tables = list(read_sql_query("SELECT name FROM sqlite_master WHERE type='table';", dbcon)['name'])
out = {tbl : read_sql_query(f"SELECT * from {tbl}", dbcon) for tbl in tables}
return out
Upvotes: 18
Reputation: 2525
Despite sqlite being part of the Python Standard Library and is a nice and easy interface to SQLite databases, the Pandas tutorial states:
Note In order to use read_sql_table(), you must have the SQLAlchemy optional dependency installed.
But Pandas still supports sqlite3 access if you want to avoid installing SQLAlchemy:
import sqlite3
import pandas as pd
# Create your connection.
cnx = sqlite3.connect('file.db')
df = pd.read_sql_query("SELECT * FROM table_name", cnx)
As stated here, but you need to know the name of the used table in advance.
Upvotes: 213
Reputation: 828
I wrote a piece of code up that saves tables in a database file such as .sqlite or .db and creates an excel file out of it with each table as a sheet or makes individual tables into csvs.
Note: You don't need to know the table names in advance!
import os, fnmatch
import sqlite3
import pandas as pd
#creates a directory without throwing an error
def create_dir(dir):
if not os.path.exists(dir):
os.makedirs(dir)
print("Created Directory : ", dir)
else:
print("Directory already existed : ", dir)
return dir
#finds files in a directory corresponding to a regex query
def find(pattern, path):
result = []
for root, dirs, files in os.walk(path):
for name in files:
if fnmatch.fnmatch(name, pattern):
result.append(os.path.join(root, name))
return result
#convert sqlite databases(.db,.sqlite) to pandas dataframe(excel with each table as a different sheet or individual csv sheets)
def save_db(dbpath=None,excel_path=None,csv_path=None,extension="*.sqlite",csvs=True,excels=True):
if (excels==False and csvs==False):
print("Atleast one of the parameters need to be true: csvs or excels")
return -1
#little code to find files by extension
if dbpath==None:
files=find(extension,os.getcwd())
if len(files)>1:
print("Multiple files found! Selecting the first one found!")
print("To locate your file, set dbpath=<yourpath>")
dbpath = find(extension,os.getcwd())[0] if dbpath==None else dbpath
print("Reading database file from location :",dbpath)
#path handling
external_folder,base_name=os.path.split(os.path.abspath(dbpath))
file_name=os.path.splitext(base_name)[0] #firstname without .
exten=os.path.splitext(base_name)[-1] #.file_extension
internal_folder="Saved_Dataframes_"+file_name
main_path=os.path.join(external_folder,internal_folder)
create_dir(main_path)
excel_path=os.path.join(main_path,"Excel_Multiple_Sheets.xlsx") if excel_path==None else excel_path
csv_path=main_path if csv_path==None else csv_path
db = sqlite3.connect(dbpath)
cursor = db.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = cursor.fetchall()
print(len(tables),"Tables found :")
if excels==True:
#for writing to excel(xlsx) we will be needing this!
try:
import XlsxWriter
except ModuleNotFoundError:
!pip install XlsxWriter
if (excels==True and csvs==True):
writer = pd.ExcelWriter(excel_path, engine='xlsxwriter')
i=0
for table_name in tables:
table_name = table_name[0]
table = pd.read_sql_query("SELECT * from %s" % table_name, db)
i+=1
print("Parsing Excel Sheet ",i," : ",table_name)
table.to_excel(writer, sheet_name=table_name, index=False)
print("Parsing CSV File ",i," : ",table_name)
table.to_csv(os.path.join(csv_path,table_name + '.csv'), index_label='index')
writer.save()
elif excels==True:
writer = pd.ExcelWriter(excel_path, engine='xlsxwriter')
i=0
for table_name in tables:
table_name = table_name[0]
table = pd.read_sql_query("SELECT * from %s" % table_name, db)
i+=1
print("Parsing Excel Sheet ",i," : ",table_name)
table.to_excel(writer, sheet_name=table_name, index=False)
writer.save()
elif csvs==True:
i=0
for table_name in tables:
table_name = table_name[0]
table = pd.read_sql_query("SELECT * from %s" % table_name, db)
i+=1
print("Parsing CSV File ",i," : ",table_name)
table.to_csv(os.path.join(csv_path,table_name + '.csv'), index_label='index')
cursor.close()
db.close()
return 0
save_db();
Upvotes: 6
Reputation: 1567
The line
data = sqlite3.connect('data.db')
opens a connection to the database. There are no records queried up to this. So you have to execute a query afterward and provide this to the pandas DataFrame
constructor.
It should look similar to this
import sqlite3
import pandas as pd
dat = sqlite3.connect('data.db')
query = dat.execute("SELECT * From <TABLENAME>")
cols = [column[0] for column in query.description]
results= pd.DataFrame.from_records(data = query.fetchall(), columns = cols)
I am not really firm with SQL commands, so you should check the correctness of the query. should be the name of the table in your database.
Upvotes: 14
Reputation: 342
i have stored my data in database.sqlite table name is Reviews
import sqlite3
con=sqlite3.connect("database.sqlite")
data=pd.read_sql_query("SELECT * FROM Reviews",con)
print(data)
Upvotes: -1
Reputation: 3449
Search sqlalchemy
, engine
and database name in google (sqlite in this case):
import pandas as pd
import sqlalchemy
db_name = "data.db"
table_name = "LITTLE_BOBBY_TABLES"
engine = sqlalchemy.create_engine("sqlite:///%s" % db_name, execution_options={"sqlite_raw_colnames": True})
df = pd.read_sql_table(table_name, engine)
Upvotes: 7