Reputation: 187232
I have a long string (sometimes over 1000 characters) that I want to convert to an array of boolean values. And it needs to do this many times, very quickly.
let input: String = "001"
let output: [Bool] = [false, false, true]
My naive attempt was this:
input.characters.map { $0 == "1" }
But this is a lot slower than I'd like. My profiling has shown me that the map
is where the slowdown is, but I'm not sure how much simpler I can make that.
I feel like this would be wicked fast without Swift's/ObjC's overhead. In C, I think this is a simple for
loop where a byte of memory is compared to a constant, but I'm not sure what the functions or syntax is that I should be looking at.
Is there a way to do this much faster?
UPDATE:
I also tried a
output = []
for char in input.characters {
output.append(char == "1")
}
And it's about 15% faster. I'm hoping for a lot more than that.
Upvotes: 12
Views: 1241
Reputation: 448
This should be a little faster than the enumerate() where char == "1"
version (0.557s for 500_000 alternating ones and zeros vs. 1.159s algorithm 'A' from diampiax)
let input = inputStr.utf8
let n = input.count
var output = [Bool](count: n, repeatedValue: false)
let one = UInt8(49) // 1
for (idx, char) in input.enumerate() {
if char == one { output[idx] = true }
}
but it's also a lot less readable ;-p
edit: both versions are slower than the map variant, maybe you forgot to compile with optimizations?
Upvotes: 1
Reputation: 535900
I would guess that this is as fast as possible:
let targ = Character("1")
let input: String = "001" // your real string goes here
let inputchars = Array(input.characters)
var output:[Bool] = Array.init(count: inputchars.count, repeatedValue: false)
inputchars.withUnsafeBufferPointer {
inputbuf in
output.withUnsafeMutableBufferPointer {
outputbuf in
var ptr1 = inputbuf.baseAddress
var ptr2 = outputbuf.baseAddress
for _ in 0..<inputbuf.count {
ptr2.memory = ptr1.memory == targ
ptr1 = ptr1.successor()
ptr2 = ptr2.successor()
}
}
}
// output now contains the result
The reason is that, thanks to the use of buffer pointers, we are simply cycling through contiguous memory, just like the way you cycle through a C array by incrementing its pointer. Thus, once we get past the initial setup, this should be as fast as it would be in C.
EDIT In an actual test, the time difference between the OP's original method and this one is the difference between
13.3660290241241
and
0.219357967376709
which is a pretty dramatic speed-up. I hasten to add, however, that I have excluded the initial set-up from the timing test. This line:
let inputchars = Array(input.characters)
...is particularly expensive.
Upvotes: 1
Reputation: 6504
I need to some testing to be sure but I think one issue with many approaches given including the original map is that they need to iterate over the string to count the characters and then a second time to actually process the characters.
Have you tried:
let output = [Bool](input.characters.lazy.map { $0 == "1" })
This might only do a single iteration.
The other thing that could speed things up is if you can avoid using strings but instead use arrays of characters of an appropriate encoding (particularly if is more fixed size units (e.g. UTF16 or ASCII). Then then length lookup will be O(1) rather than O(n) and the iteration may be faster too
BTW always test performance with the optimiser enabled and never in the Playground because the performance characteristics are completely different, sometimes by a factor of 100.
Upvotes: 0
Reputation: 1
What about a more functional style? It's not fastest (47 ms), today, for sure...
import Cocoa
let start = clock()
let bools = [Bool](([Character] ("010101011001010101001010101100101010100101010110010101010101011001010101001010101100101010100101010101011001010101001010101100101010100101010".characters)).map({$0 == "1"}))
let msec = (clock() - start) * 1000 / UInt(CLOCKS_PER_SEC);
print("Time taken \(Double(msec)/1000.0) seconds \(msec%1000) milliseconds");
Upvotes: 0
Reputation: 12687
This is faster:
// Algorithm 'A'
let input = "0101010110010101010"
var output = Array<Bool>(count: input.characters.count, repeatedValue: false)
for (index, char) in input.characters.enumerate() where char == "1" {
output[index] = true
}
Update: under input = "010101011010101001000100000011010101010101010101"
0.0741 / 0.0087, where this approach is faster that author's in 8.46 times. With bigger data correlation more positive.
Also, with using nulTerminatedUTF8
speed a little increased, but not always speed higher than algorithm A:
// Algorithm 'B'
let input = "10101010101011111110101000010100101001010101"
var output = Array<Bool>(count: input.nulTerminatedUTF8.count, repeatedValue: false)
for (index, code) in input.nulTerminatedUTF8.enumerate() where code == 49 {
output[index] = true
}
In result graph appears, with input length 2196, where first and last 0..1, A – second, B – third point. A: 0.311sec, B: 0.304sec
Upvotes: 13
Reputation: 3661
import Foundation
let input:String = "010101011001010101001010101100101010100101010110010101010101011001010101001010101100101010100101010101011001010101001010101100101010100101010"
var start = clock()
var output = Array<Bool>(count: input.nulTerminatedUTF8.count, repeatedValue: false)
var index = 0
for val in input.nulTerminatedUTF8 {
if val != 49 {
output[index] = true
}
index+=1
}
var diff = clock() - start;
var msec = diff * 1000 / UInt(CLOCKS_PER_SEC);
print("Time taken \(Double(msec)/1000.0) seconds \(msec%1000) milliseconds");
This should be really fast. Try it out. For 010101011010101001000100000011010101010101010101
it takes 0.039 secs.
Upvotes: 5
Reputation: 57060
Use withCString(_:)
to retrieve a raw UnsafePointer<Int8>
. Iterate over that and compare to 49 (ascii value of "1"
).
Upvotes: 0
Reputation: 878
One more step should speed that up even more. Using reserveCapacity
will resize the array once before the loops starts instead of trying to do it as the loop runs.
var output = [Bool]()
output.reserveCapacity(input.characters.count)
for char in input.characters {
output.append(char == "1")
}
Upvotes: 0