Reputation: 60004
How do I inspect the content of a Parquet file from the command line?
The only option I see now is
$ hadoop fs -get my-path local-file
$ parquet-tools head local-file | less
I would like to
local-file
and json
rather than the typeless text that parquet-tools
prints.Is there an easy way?
Upvotes: 133
Views: 274415
Reputation: 101
For Vim user, to view parquet in vim, not create any temporary file,
install parquet-tools,
To view as json:
parquet-tools cat -f jsonl --limit=999 my_data.parquet | vim -
To view as csv:
parquet-tools cat -f csv -l 999 my_data.parquet | vim -
To view as tsv:
parquet-tools cat -f tsv my_data.parquet | vim -
Tips: Vim plugin 'mechatroner/rainbow_csv' is recommended for viewing csv, tsv
Upvotes: 0
Reputation: 8684
DuckDB has CLI tool (prebuilt binaries for linux, windows, macOS) that can be used to query parquet data from command line.
PS C:\Users\nsuser\dev\standalone_executable_binaries> ./duckdb
v0.5.1 7c111322d
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
Read parquet data using SQL queries
D SELECT * FROM READ_PARQUET('C:\Users\nsuser\dev\sample_files\userdata1.parquet') limit 3;
┌─────────────────────┬────┬────────────┬───────────┬─────────────────────────┬────────┬────────────────┬──────────────────┬───────────┬───────────┬───────────┬─────────────────────┬──────────┐
│ registration_dttm │ id │ first_name │ last_name │ email │ gender │ ip_address │ cc │ country │ birthdate │ salary │ title │ comments │
├─────────────────────┼────┼────────────┼───────────┼─────────────────────────┼────────┼────────────────┼──────────────────┼───────────┼───────────┼───────────┼─────────────────────┼──────────┤
│ 2016-02-03 07:55:29 │ 1 │ Amanda │ Jordan │ [email protected] │ Female │ 1.197.201.2 │ 6759521864920116 │ Indonesia │ 3/8/1971 │ 49756.53 │ Internal Auditor │ 1E+02 │
│ 2016-02-03 17:04:03 │ 2 │ Albert │ Freeman │ [email protected] │ Male │ 218.111.175.34 │ │ Canada │ 1/16/1968 │ 150280.17 │ Accountant IV │ │
│ 2016-02-03 01:09:31 │ 3 │ Evelyn │ Morgan │ [email protected] │ Female │ 7.161.136.94 │ 6767119071901597 │ Russia │ 2/1/1960 │ 144972.51 │ Structural Engineer │ │
└─────────────────────┴────┴────────────┴───────────┴─────────────────────────┴────────┴────────────────┴──────────────────┴───────────┴───────────┴───────────┴─────────────────────┴──────────┘
Read Parquet Schema.
D DESCRIBE SELECT * FROM READ_PARQUET('C:\Users\nsuser\dev\sample_files\userdata1.parquet');
OR
D SELECT * FROM PARQUET_SCHEMA('C:\Users\nsuser\dev\sample_files\userdata1.parquet');
┌───────────────────┬─────────────┬──────┬─────┬─────────┬───────┐
│ column_name │ column_type │ null │ key │ default │ extra │
├───────────────────┼─────────────┼──────┼─────┼─────────┼───────┤
│ registration_dttm │ TIMESTAMP │ YES │ │ │ │
│ id │ INTEGER │ YES │ │ │ │
│ first_name │ VARCHAR │ YES │ │ │ │
│ birthdate │ VARCHAR │ YES │ │ │ │
│ salary │ DOUBLE │ YES │ │ │ │
└───────────────────┴─────────────┴──────┴─────┴─────────┴───────┘
Read Parquet metadata and statistics.
D SELECT row_group_id, row_group_num_rows, compression, stats_min, stats_max, stats_null_count FROM PARQUET_METADATA('C:\Users\nsuser\dev\sample_files\userdata1.parquet');
┌──────────────┬────────────────────┬──────────────┬─────────────────────┬─────────────────────┬──────────────────┐
│ row_group_id │ row_group_num_rows │ compression │ stats_min │ stats_max │ stats_null_count │
├──────────────┼────────────────────┼──────────────┼─────────────────────┼─────────────────────┼──────────────────┤
│ 0 │ 1000 │ UNCOMPRESSED │ 2016-02-03 22:59:12 │ 2016-02-03 20:51:31 │ 0 │
│ 0 │ 1000 │ UNCOMPRESSED │ 1 │ 1000 │ 0 │
│ 0 │ 1000 │ UNCOMPRESSED │ "Bonaire │ Zimbabwe │ 0 │
│ 0 │ 1000 │ UNCOMPRESSED │ │ 9/9/1981 │ 0 │
│ 0 │ 1000 │ UNCOMPRESSED │ 12380.49 │ 286592.99 │ 68 │
└──────────────┴────────────────────┴──────────────┴─────────────────────┴─────────────────────┴──────────────────┘
Alternative:
parquet-cli is a light weight python alternative.
pip install parquet-cli //installs via pip
parq filename.parquet //view meta data
parq filename.parquet --schema //view the schema
parq filename.parquet --head 10 //view top n rows
Upvotes: 23
Reputation: 748
Actually, I find out that pandas has already supported parquet files, as long as you've installed pyarrow or fastparquet as its backend. Check out read_parquet
:
import pandas as pd
df = pd.read_parquet('your-file.parquet')
df.head(10)
...
Previous answer: Might be late for the party, but I just learnt that pyarrow supports reading parquet already, and it's quite powerful. Chances are that you already have pyarrow and pandas installed, so you can read parquet just like this
from pyarrow import parquet
import pandas
p = parquet.read_table('/path/to/your/xxxxx.parquet')
df = p.to_pandas()
df.head(10)
...
Upvotes: 12
Reputation: 81
If you use Docker you can also do something like this:
docker run -ti -v C:\file.parquet:/tmp/file.parquet nathanhowell/parquet-tools cat /tmp/file.parquet
Upvotes: 2
Reputation: 80192
On Windows 10 x64 I ended up building parquet-reader
just now from source:
Installed WSL with Ubuntu LTS 18.04. Upgraded gcc to v9.2.1 and CMake to latest. Bonus: install Windows Terminal.
git checkout https://github.com/apache/arrow
cd arrow
cd cpp
mkdir buildgcc
cd buildgcc
cmake .. -DPARQUET_BUILD_EXECUTABLES=ON -DARROW_PARQUET=ON -DARROW_WITH_SNAPPY=ON -DARROW_WITH_BROTLI=ON -DPARQUET_BUILD_EXAMPLES=ON -DARROW_CSV=ON
make -j 20
cd release
./parquet-reader
Usage: parquet-reader [--only-metadata] [--no-memory-map] [--json] [--dump] [--print-key-value-metadata] [--columns=...] <file>
If it has trouble building, may have to use vcpkg
for the missing libraries.
Also see a another solution that offers less, but in a simpler way: https://github.com/chhantyal/parquet-cli
Linked from: How can I write streaming/row-oriented data using parquet-cpp without buffering?
Initially tried brew install parquet-tools
, but this did not appear to work under my install of WSL
Same as above. Use CMake to generate the Visual Studio 2019 project, then build.
git checkout https://github.com/apache/arrow
cd arrow
cd cpp
mkdir buildmsvc
cd buildmsvc
cmake .. -DPARQUET_BUILD_EXECUTABLES=ON -DARROW_PARQUET=ON -DARROW_WITH_SNAPPY=ON -DARROW_WITH_BROTLI=ON -DPARQUET_BUILD_EXAMPLES=ON -DARROW_CSV=ON
# Then open the generated .sln file in MSVC and build. Everything should build perfectly.
Troubleshooting:
In case there was any missing libraries, I pointed it at my install of vcpkg
. I ran vcpkg integrate install
, then copied the to the end of the CMake
line:
-DCMAKE_TOOLCHAIN_FILE=[...path...]/vcpkg/scripts/buildsystems
If it had complained about any missing libraries, I would have installed these, e.g. boost
, etc using commands like vcpkg install boost:x64
.
Upvotes: 0
Reputation: 80192
On Windows 10 x64, try Parq:
choco install parq
This installs everything into the current directory. You will have to add this directory manually to the path, or run parq.exe
from within this directory.
My other answer builds parquet-reader
from source. This utility looks like it does much the same job.
Upvotes: 1
Reputation: 817
I've found this program really useful: https://github.com/chhantyal/parquet-cli
Lets you view parquet files without having the whole infrastructure installed.
Just type:
pip install parquet-cli
parq input.parquet --head 10
Upvotes: 67
Reputation: 2876
If you're using HDFS, the following commands are very useful as they are frequently used (left here for future reference):
hadoop jar parquet-tools-1.9.0.jar schema hdfs://path/to/file.snappy.parquet
hadoop jar parquet-tools-1.9.0.jar head -n5 hdfs://path/to/file.snappy.parquet
Upvotes: 5
Reputation: 1082
Install homebrew on your Mac (see https://brew.sh/) and then just:
brew install parquet-tools
Once you have done that you can user parquet-tools binary (which should now be in your path) at your command line for various commands.
parquet-tools
or parquet-tools -h
will give you usage info.
Examples:
> parquet-tools rowcount part-00000-fc34f237-c985-4ebc-822b-87fa446f6f70.c000.snappy.parquet
Total RowCount: 148192
> parquet-tools head -n 1 part-00000-fc34f237-c985-4ebc-822b-87fa446f6f70.c000.snappy.parquet
:created_at = 2019-02-28T00:16:06.329Z
:id = row-wive~i58u-qaeu
:updated_at = 2019-02-28T00:16:06.329Z
agency = 1
body_style = PA
color = GY
fine_amount = 63
issue_date = 17932
issue_time = 1950
latitude = 64379050
location = 12743 DAVENTRY
longitude = 19261609
make = HYDA
marked_time =
meter_id =
plate_expiry_date = 18048
route = 16X2
rp_state_plate = CA
ticket_number = 1020798376
vin =
violation_code = 22502A#
violation_description = 18 IN. CURB/2 WAY
> parquet-tools meta part-00000-fc34f237-c985-4ebc-822b-87fa446f6f70.c000.snappy.parquet
file: file:/Users/matthewropp/team_demo/los-angeles-parking-citations/raw_citations/issue_month=201902/part-00000-fc34f237-c985-4ebc-822b-87fa446f6f70.c000.snappy.parquet
creator: parquet-mr version 1.10.0 (build 031a6654009e3b82020012a18434c582bd74c73a)
extra: org.apache.spark.sql.parquet.row.metadata = {"type":"struct","fields":[{"name":":created_at","type":"string","nullable":true,"metadata":{}},{"name":":id","type":"string","nullable":true,"metadata":{}},{"name":":updated_at","type":"string","nullable":true,"metadata":{}},{"name":"agency","type":"integer","nullable":true,"metadata":{}},{"name":"body_style","type":"string","nullable":true,"metadata":{}},{"name":"color","type":"string","nullable":true,"metadata":{}},{"name":"fine_amount","type":"integer","nullable":true,"metadata":{}},{"name":"issue_date","type":"date","nullable":true,"metadata":{}},{"name":"issue_time","type":"integer","nullable":true,"metadata":{}},{"name":"latitude","type":"decimal(8,1)","nullable":true,"metadata":{}},{"name":"location","type":"string","nullable":true,"metadata":{}},{"name":"longitude","type":"decimal(8,1)","nullable":true,"metadata":{}},{"name":"make","type":"string","nullable":true,"metadata":{}},{"name":"marked_time","type":"string","nullable":true,"metadata":{}},{"name":"meter_id","type":"string","nullable":true,"metadata":{}},{"name":"plate_expiry_date","type":"date","nullable":true,"metadata":{}},{"name":"route","type":"string","nullable":true,"metadata":{}},{"name":"rp_state_plate","type":"string","nullable":true,"metadata":{}},{"name":"ticket_number","type":"string","nullable":false,"metadata":{}},{"name":"vin","type":"string","nullable":true,"metadata":{}},{"name":"violation_code","type":"string","nullable":true,"metadata":{}},{"name":"violation_description","type":"string","nullable":true,"metadata":{}}]}
file schema: spark_schema
--------------------------------------------------------------------------------
: created_at: OPTIONAL BINARY O:UTF8 R:0 D:1
: id: OPTIONAL BINARY O:UTF8 R:0 D:1
: updated_at: OPTIONAL BINARY O:UTF8 R:0 D:1
agency: OPTIONAL INT32 R:0 D:1
body_style: OPTIONAL BINARY O:UTF8 R:0 D:1
color: OPTIONAL BINARY O:UTF8 R:0 D:1
fine_amount: OPTIONAL INT32 R:0 D:1
issue_date: OPTIONAL INT32 O:DATE R:0 D:1
issue_time: OPTIONAL INT32 R:0 D:1
latitude: OPTIONAL INT32 O:DECIMAL R:0 D:1
location: OPTIONAL BINARY O:UTF8 R:0 D:1
longitude: OPTIONAL INT32 O:DECIMAL R:0 D:1
make: OPTIONAL BINARY O:UTF8 R:0 D:1
marked_time: OPTIONAL BINARY O:UTF8 R:0 D:1
meter_id: OPTIONAL BINARY O:UTF8 R:0 D:1
plate_expiry_date: OPTIONAL INT32 O:DATE R:0 D:1
route: OPTIONAL BINARY O:UTF8 R:0 D:1
rp_state_plate: OPTIONAL BINARY O:UTF8 R:0 D:1
ticket_number: REQUIRED BINARY O:UTF8 R:0 D:0
vin: OPTIONAL BINARY O:UTF8 R:0 D:1
violation_code: OPTIONAL BINARY O:UTF8 R:0 D:1
violation_description: OPTIONAL BINARY O:UTF8 R:0 D:1
row group 1: RC:148192 TS:10503944 OFFSET:4
--------------------------------------------------------------------------------
: created_at: BINARY SNAPPY DO:0 FPO:4 SZ:607/616/1.01 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: 2019-02-28T00:16:06.329Z, max: 2019-03-02T00:20:00.249Z, num_nulls: 0]
: id: BINARY SNAPPY DO:0 FPO:611 SZ:2365472/3260525/1.38 VC:148192 ENC:BIT_PACKED,PLAIN,RLE ST:[min: row-2229_y75z.ftdu, max: row-zzzs_4hta.8fub, num_nulls: 0]
: updated_at: BINARY SNAPPY DO:0 FPO:2366083 SZ:602/611/1.01 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: 2019-02-28T00:16:06.329Z, max: 2019-03-02T00:20:00.249Z, num_nulls: 0]
agency: INT32 SNAPPY DO:0 FPO:2366685 SZ:4871/5267/1.08 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: 1, max: 58, num_nulls: 0]
body_style: BINARY SNAPPY DO:0 FPO:2371556 SZ:36244/61827/1.71 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: , max: WR, num_nulls: 0]
color: BINARY SNAPPY DO:0 FPO:2407800 SZ:111267/111708/1.00 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: , max: YL, num_nulls: 0]
fine_amount: INT32 SNAPPY DO:0 FPO:2519067 SZ:71989/82138/1.14 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: 25, max: 363, num_nulls: 63]
issue_date: INT32 SNAPPY DO:0 FPO:2591056 SZ:20872/23185/1.11 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: 2019-02-01, max: 2019-02-27, num_nulls: 0]
issue_time: INT32 SNAPPY DO:0 FPO:2611928 SZ:210026/210013/1.00 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: 1, max: 2359, num_nulls: 41]
latitude: INT32 SNAPPY DO:0 FPO:2821954 SZ:508049/512228/1.01 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: 99999.0, max: 6513161.2, num_nulls: 0]
location: BINARY SNAPPY DO:0 FPO:3330003 SZ:1251364/2693435/2.15 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,PLAIN,RLE ST:[min: , max: ZOMBAR/VALERIO, num_nulls: 0]
longitude: INT32 SNAPPY DO:0 FPO:4581367 SZ:516233/520692/1.01 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: 99999.0, max: 1941557.4, num_nulls: 0]
make: BINARY SNAPPY DO:0 FPO:5097600 SZ:147034/150364/1.02 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: , max: YAMA, num_nulls: 0]
marked_time: BINARY SNAPPY DO:0 FPO:5244634 SZ:11675/17658/1.51 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: , max: 959.0, num_nulls: 0]
meter_id: BINARY SNAPPY DO:0 FPO:5256309 SZ:172432/256692/1.49 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: , max: YO97, num_nulls: 0]
plate_expiry_date: INT32 SNAPPY DO:0 FPO:5428741 SZ:149849/152288/1.02 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: 2000-02-01, max: 2099-12-01, num_nulls: 18624]
route: BINARY SNAPPY DO:0 FPO:5578590 SZ:38377/45948/1.20 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: , max: WTD, num_nulls: 0]
rp_state_plate: BINARY SNAPPY DO:0 FPO:5616967 SZ:33281/60186/1.81 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: AB, max: XX, num_nulls: 0]
ticket_number: BINARY SNAPPY DO:0 FPO:5650248 SZ:801039/2074791/2.59 VC:148192 ENC:BIT_PACKED,PLAIN ST:[min: 1020798376, max: 4350802142, num_nulls: 0]
vin: BINARY SNAPPY DO:0 FPO:6451287 SZ:64/60/0.94 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: , max: , num_nulls: 0]
violation_code: BINARY SNAPPY DO:0 FPO:6451351 SZ:94784/131071/1.38 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: 000, max: 8942, num_nulls: 0]
violation_description: BINARY SNAPPY DO:0 FPO:6546135 SZ:95937/132641/1.38 VC:148192 ENC:BIT_PACKED,PLAIN_DICTIONARY,RLE ST:[min: , max: YELLOW ZONE, num_nulls: 0]
> parquet-tools dump -m -c make part-00000-fc34f237-c985-4ebc-822b-87fa446f6f70.c000.snappy.parquet | head -20
BINARY make
--------------------------------------------------------------------------------
*** row group 1 of 1, values 1 to 148192 ***
value 1: R:0 D:1 V:HYDA
value 2: R:0 D:1 V:NISS
value 3: R:0 D:1 V:NISS
value 4: R:0 D:1 V:TOYO
value 5: R:0 D:1 V:AUDI
value 6: R:0 D:1 V:MERC
value 7: R:0 D:1 V:LEX
value 8: R:0 D:1 V:BMW
value 9: R:0 D:1 V:GMC
value 10: R:0 D:1 V:HOND
value 11: R:0 D:1 V:TOYO
value 12: R:0 D:1 V:NISS
value 13: R:0 D:1 V:
value 14: R:0 D:1 V:THOR
value 15: R:0 D:1 V:DODG
value 16: R:0 D:1 V:DODG
value 17: R:0 D:1 V:HOND
Upvotes: 90
Reputation: 306
I recommend just building and running the parquet-tools.jar for your Hadoop distribution.
Checkout the github project: https://github.com/apache/parquet-mr/tree/master/parquet-tools
hadoop jar ./parquet-tools-<VERSION>.jar <command>
.
Upvotes: 28
Reputation: 14591
You can use parquet-tools
with the command cat
and the --json
option in order to view the files without a local copy and in the JSON format.
Here is an example:
parquet-tools cat --json hdfs://localhost/tmp/save/part-r-00000-6a3ccfae-5eb9-4a88-8ce8-b11b2644d5de.gz.parquet
This prints out the data in JSON format:
{"name":"gil","age":48,"city":"london"}
{"name":"jane","age":30,"city":"new york"}
{"name":"jordan","age":18,"city":"toronto"}
Disclaimer: this was tested in Cloudera CDH 5.12.0
Upvotes: 138
Reputation: 33
I'd rather use hdfs NFS Gateway + autofs for easy hdfs file investigation.
My setup:
/net -hosts nobind
I can easily run following command to investigate any hdfs file
head /net/<namenodeIP>/path/to/hdfs/file
parquet-tools head /net/<namenodeIP>/path/to/hdfs/par-file
rsync -rv /local/directory/ /net/<namenodeIP>/path/to/hdfs/parentdir/
forget about the hadoop* hdfs* command ;)
Upvotes: 0
Reputation: 1311
By default parquet-tools in general will look for the local file directory, so to point it to hdfs, we need to add hdfs:// in the beginning of the file path. So in your case, you can do something like this
parquet-tools head hdfs://localhost/<hdfs-path> | less
I had the same issue and it worked fine for me. There is no need to download the file locally first.
Upvotes: 13