Reputation: 55
4 0 2
0 1
0 3
2 3
0
3
I'm trying to find effective solution to the above problem.
Given input first line is: number of nodes in binary tree=4
, root=0
, depths=2
Edges or nodes on the edge are not given in any specific order, but edge that connects node to left child appears in input.
and the last two lines to find the position of 0 and 3 ,its output is
1 2
3 1
Tree can have more than million nodes and build tree using
I couldn't find how to represent tree in such way that it would be possible to find coordinates of nodes
updated code
class node:
def __init__(self, x):
self.x=4
self.l=2
self.r=0
self.id=id
def recurse(node,id, depth = -1, position=-1, max_depth=-1):
depth=depth+1
current_depth=depth
max_depth=max(max_depth,current_depth)
matchl=False
matchr=False
if node.l :
(depthl,position,max_depth,matchl)=node.recurse(node.l,id,current_depth,position,max_depth)
positionl = position
position = position + 1
current_position=position
if node.r:
(depth,position,max_depth,matchr)=node.recurse(node.r,id,current_depth,position,max_depth)
if matchl:
return (depthl,positionl,max_depth,True)
if node.x==id:
return (current_depth,current_position,max_depth,True)
return (depth,position,max_depth,matchr)
n2=node(2)
n3=node(3)
n1=node(1)
n0=node(0)
n0.l=n1
n0.r=n3
n3.l=n2
(depth,position,max_depth,match)=node.recurse(n0,3)
if match:
answer = (position, max_depth - depth )
Upvotes: 3
Views: 2092
Reputation: 4855
The way your problem is given assumes no two nodes can share a column, and that the left node is filled first, given that condition is easy to recruse a node position if you traverse the tree in the correct order (left leaf, node, right leaf):
The following code is untested, but should give you an idea of the algorithm:
def recurse( node, id, depth = -1, position=-1, max_depth=-1):
depth=depth+1
current_depth=depth
max_depth=max(max_depth,current_depth)
matchl=False
matchr=False
if node.l :
(depthl,position,max_depth,matchl)=recurse(node.l,id,current_depth,position,max_depth)
positionl = position
position = position + 1
current_position=position
if node.r:
(depth,position,max_depth,matchr)=recurse(node.r,id,current_depth,position,max_depth)
if matchl:
return (depthl,positionl,max_depth,True)
if node.x==id:
return (current_depth,current_position,max_depth,True)
return (depth,position,max_depth,matchr)
Usage
(depth,position,match, max_depth) = recurse(root_node,target_id)
Example:
n2=node(2)
n3=node(3)
n1=node(1)
n0=node(0)
n0.l=n1
n0.r=n3
n3.l=n2
(depth,position,max_depth,match)=recurse(n0,3)
if match:
answer = (position, max_depth - depth )
Upvotes: 1
Reputation: 2691
Your questions seems to imply that the graphical representation of a tree is unique, and it is not the case. You should search for "Tree Drawing Algorithms".
For example, a quick search yielded http://cs.brown.edu/~rt/gdhandbook/chapters/trees.pdf and http://www.cs.unc.edu/techreports/89-034.pdf
Upvotes: 0