Reputation: 65530
I have created a dataframe and set an index:
df = pd.DataFrame(np.random.randn(8, 4),columns=['A', 'B', 'C', 'D'])
df = df.set_index('A')
The dataframe looks like this:
B C D
A
0.687263 -1.700568 0.140175 1.420394
-0.212621 -0.700442 -0.041497 -1.034021
-0.614214 -0.437313 -0.464493 -1.182492
-0.885062 0.203892 -0.412400 -0.578346
-1.222661 2.014908 -0.463674 -0.378910
0.132472 -0.389512 0.623531 -0.788556
-1.083620 1.167158 -0.558217 -0.222078
1.066270 -0.215586 -0.884757 -0.878557
How do I get the value of B in the row for which A
is 0.687263
?
I've tried:
e = df.loc(0.687263)
This gives me a LocIndexer
object, rather than the row I'd expect (also I'd like to specify that it should be a single row if possible):
<pandas.core.indexing._LocIndexer object at 0x10385e210>
And if I now try e['B']
I get an error.
How do I get the value of B?
Upvotes: 25
Views: 43982
Reputation: 433
pandas rounds values when it prints a dataframe. The actual value you are trying to index on is:
1.764052345967664
import pandas as pd
import numpy as np
np.random.seed(0)
df = pd.DataFrame(np.random.randn(8, 4),columns=['A', 'B', 'C', 'D'])
df = df.set_index('A')
print df
B C D
A
1.764052 0.400157 0.978738 2.240893
1.867558 -0.977278 0.950088 -0.151357
-0.103219 0.410599 0.144044 1.454274
0.761038 0.121675 0.443863 0.333674
1.494079 -0.205158 0.313068 -0.854096
-2.552990 0.653619 0.864436 -0.742165
2.269755 -1.454366 0.045759 -0.187184
1.532779 1.469359 0.154947 0.378163
df.loc[1.764052345967664]
Out[32]:
B 0.400157
C 0.978738
D 2.240893
Name: 1.76405234597, dtype: float64
Upvotes: 30