Reputation: 431
When using scipy, I was able to transform my data in the following format:
(row, col) (weight)
(0, 0) 5
(0, 47) 5
(0, 144) 5
(0, 253) 4
(0, 513) 5
...
(6039, 3107) 5
(6039, 3115) 3
(6039, 3130) 4
(6039, 3132) 2
How can I transform this into an array or sparse matrix with zeros for missing weight values as such? (based on the data above, column 1 to 46 should be filled with zeros, and so on...)
0 1 2 3 ... 47 48 49 50
1 [0 0 0 0 ... 5 0 0 0 0
2 2 0 1 0 ... 4 0 5 0 0
3 3 1 0 5 ... 1 0 0 4 2
4 0 0 0 4 ... 5 0 1 3 0
5 5 1 5 4 ... 0 0 3 0 1]
I know it is better in terms of memory to keep the data in the format above, but I need it as a matrix for experimentation.
Upvotes: 5
Views: 3184
Reputation: 11602
scipy.sparse
does it for you.
import numpy as np
from scipy.sparse import dok_matrix
your_data = [((2, 7), 1)]
XDIM, YDIM = 10, 10 # Replace with your values
dct = {}
for (row, col), weight in your_data:
dct[(row, col)] = weight
smat = dok_matrix((XDIM, YDIM))
smat.update(dct)
dense = smat.toarray()
print dense
'''
[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
'''
Upvotes: 7