Reputation: 10166
It seems that calling lm()
from within a function or via lapply
screws up the $call
associated with a fit. Minimal working example:
> library(MASS)
> dat <- data.frame(x = 1:100, y=1:100)
> dat <- within(dat, z <- x + log(y) + rnorm(100))
> fits <- lapply(list(z ~ x + y, z ~ x + log(y)), lm, dat)
> stepAIC(fits[[1]]) # <-- error when I try to use the fit in other functions
Error in eval(expr, envir, enclos) : could not find function "FUN"
> fits[[1]]$call
FUN(formula = X[[i]], data = ..1) # Aha -- this must be why -- $call is screwed up
How do I resolve this problem and prevent the above error?
Upvotes: 1
Views: 1208
Reputation: 270298
Try using this as the function in the lapply. This produces nice looking formulas in fits
showing the actual formula and stepAIC
works:
fun <- function(fo) do.call("lm", list(fo, quote(dat)))
fits <- lapply(list(z ~ x + y, z ~ x + log(y)), fun)
giving:
> fits[[1]]
Call:
lm(formula = z ~ x + y, data = dat)
Coefficients:
(Intercept) x y
2.154 1.031 NA
> stepAIC(fits[[1]])
Start: AIC=-3.34
z ~ x + y
Step: AIC=-3.34
z ~ x
Df Sum of Sq RSS AIC
<none> 93 -3.34
- x 1 88600 88693 680.78
Call:
lm(formula = z ~ x, data = dat)
Coefficients:
(Intercept) x
2.154 1.031
Upvotes: 3
Reputation: 11514
An alternative yould be to apply the stepAIC
inside lapply
directly:
AICs <- lapply(list(z ~ x + y, z ~ x + log(y)),
function(x) stepAIC(lm(x,dat)))
This gives you a list of the output of stepAIC
for all models.
Upvotes: 2
Reputation: 132989
Sometimes it's better to supply an anonymous function to lapply
:
fits <- lapply(list(z ~ x + y, z ~ x + log(y)),
function(f) lm(f, data = dat))
stepAIC(fits[[1]])
#works
Note that this (usually my preferred way to make scoping explicit) doesn't work because DF
is not found by stepAIC
:
fits <- lapply(list(z ~ x + y, z ~ x + log(y)),
function(f, DF) lm(f, data = DF), DF = dat)
Note that stepwise regression is a bad method anyway.
Upvotes: 6