Reputation: 5461
Consider I have the below dataframe
AccountId,CloseDate
1,2015-05-07
2,2015-05-09
3,2015-05-01
4,2015-05-07
1,2015-05-09
1,2015-05-12
2,2015-05-12
3,2015-05-01
3,2015-05-01
3,2015-05-02
4,2015-05-17
1,2015-05-12
I want to group it based on AccountId and then I want to add another column naming date_diff which will contain the difference in CloseDate between the current row and previous row. Please note that I want this date_diff to be calculated only for rows having same AccountId. So I need to group the data before adding another column
Below is the R code that I am using
df <- read.df(sqlContext, "/home/ubuntu/work/csv/sample.csv", source = "com.databricks.spark.csv", inferSchema = "true", header="true")
df$CloseDate <- to_date(df$CloseDate)
groupedData <- SparkR::group_by(df, df$AccountId)
SparkR::mutate(groupedData, DiffCloseDt = as.numeric(SparkR::datediff((CloseDate),(SparkR::lag(CloseDate,1)))))
To add another column I am using mutate. But as the group_by returns groupedData I am not able to use mutate here. I am getting the below error
Error in (function (classes, fdef, mtable) :
unable to find an inherited method for function ‘mutate’ for signature ‘"GroupedData"’
So how can I convert GroupedData into Dataframe so that I can add columns using mutate?
Upvotes: 1
Views: 2770
Reputation: 330343
What you want is not possible to achieve using group_by
. As already explained quite a few times on SO :
group_by
on a DataFrame
doesn't physical group the data. Moreover order of operations after applying group_by
is nondeterministic.
To achieve desired output you'll have to use window functions and provide an explicit ordering:
df <- structure(list(AccountId = c(1L, 2L, 3L, 4L, 1L, 1L, 2L, 3L,
3L, 3L, 4L, 1L), CloseDate = structure(c(3L, 4L, 1L, 3L, 4L,
5L, 5L, 1L, 1L, 2L, 6L, 5L), .Label = c("2015-05-01", "2015-05-02",
"2015-05-07", "2015-05-09", "2015-05-12", "2015-05-17"), class = "factor")),
.Names = c("AccountId", "CloseDate"),
class = "data.frame", row.names = c(NA, -12L))
hiveContext <- sparkRHive.init(sc)
sdf <- createDataFrame(hiveContext, df)
registerTempTable(sdf, "df")
query <- "SELECT *, LAG(CloseDate, 1) OVER (
PARTITION BY AccountId ORDER BY CloseDate
) AS DateLag FROM df"
dfWithLag <- sql(hiveContext, query)
withColumn(dfWithLag, "diff", datediff(dfWithLag$CloseDate, dfWithLag$DateLag)) %>%
head()
## AccountId CloseDate DateLag diff
## 1 1 2015-05-07 <NA> NA
## 2 1 2015-05-09 2015-05-07 2
## 3 1 2015-05-12 2015-05-09 3
## 4 1 2015-05-12 2015-05-12 0
## 5 2 2015-05-09 <NA> NA
## 6 2 2015-05-12 2015-05-09 3
Upvotes: 3