Reputation: 80
I want to handle a large number of arrays of doubles. All arrays are of the same length. I decided to use std::vector of std::arrays. For data scaling I need to find minima and maxima of all the values. How I figured I could do this is as follows:
#include <algorithm>
#include <vector>
#include <array>
class ChannelData {
...
template<std::size_t N>
bool static compareX(std::array<double, m_nelem> const& a, std::array<double, m_nelem> const& b) {
return a[N] < b[N];
}
std::vector<std::array<double, m_nelem> > m_data;
std::array<<std::array<double, 2> m_nelem> m_minmax;
void find_minmax_x(){
for (int i = 0; i < m_nelem; i++){
auto minmax = std::minmax_element(m_data.begin(), m_data.end(), compareX<i>);
m_minmax[i][0] = (*minmax.first)[i];
m_minmax[i][1] = (*minmax.second)[i];
}
}
This does not compile. That is because the nontype parameter i
that I use to to instantiate compareX<N>
in function find_minmax_x
is not a constant expression.
To my understanding, the compiler does not know which versions to instantiate at compile time, even though in this case it is fairly obvious. What I ended up doing was manually unrolling the for-loop, but that is ugly. Could you recommend a more aesthetic way to accomplish this?
Upvotes: 2
Views: 28
Reputation: 275500
struct compareX {
std::size_t N;
bool operator()(std::array<double, m_nelem> const& a, std::array<double, m_nelem> const& b) const {
return a[N] < b[N];
}
};
...
void find_minmax_x(){
for (int i = 0; i < m_nelem; i++){
auto minmax = std::minmax_element(m_data.begin(), m_data.end(), compareX{i});
m_minmax[i][0] = (*minmax.first)[i];
m_minmax[i][1] = (*minmax.second)[i];
}
}
if your value isn't a compile-time value, don't pass it as a template non-type parameter. Store it.
std
algorithms will consume invokable objects as easily as they'll consume function pointers.
Writing compareX
out of line is a bit annoying. We can move it inline:
void find_minmax_x(){
for (int i = 0; i < m_nelem; i++){
auto compareX = [i](std::array<double, m_nelem> const& a, std::array<double, m_nelem> const& b) {
return a[i] < b[i];
};
auto minmax = std::minmax_element(m_data.begin(), m_data.end(), compareX);
m_minmax[i][0] = (*minmax.first)[i];
m_minmax[i][1] = (*minmax.second)[i];
}
}
which is a bit verbose right there, because the types in question are huge. In C++14 we do away with those huge types and get:
void find_minmax_x(){
for (int i = 0; i < m_nelem; i++){
auto compareX = [&](auto&& a, auto&& b) {
return a[i] < b[i];
};
auto minmax = std::minmax_element(m_data.begin(), m_data.end(), compareX);
m_minmax[i][0] = (*minmax.first)[i];
m_minmax[i][1] = (*minmax.second)[i];
}
}
which automatically creates an invokable object with a template operator()
that captures i
by reference.
I typically have a projection order_by
comparison:
template<class F, class O=std::less<>>
auto order_by( F&& f, O&& o = {} ) {
return [f = std::forward<F>(f), o = std::forward<O>(o)](auto&& lhs, auto&& rhs)->bool{
return o(f(lhs), f(rhs));
};
};
(C++14 again, can be written in C++11) which would reduce your code to:
void find_minmax_x(){
for (int i = 0; i < m_nelem; i++){
auto minmax = std::minmax_element(
m_data.begin(), m_data.end(),
order_by([i](auto&&a){return a[i];})
);
m_minmax[i][0] = (*minmax.first)[i];
m_minmax[i][1] = (*minmax.second)[i];
}
}
Upvotes: 4