Reputation:
I have an image with two contours, where one contour is always 'inside' another. I want to find the distance between the two contours for 90 different angles (meaning, distance at every 4 degrees). How do I go about doing it?
Here's an example image:
Thank you!
Upvotes: 9
Views: 7415
Reputation: 27567
Take this image of two sets of two shapes:
We want to find the distance between the edges of each set of shapes, including where the edges overlap.
import cv2
import numpy as np
def get_masked(img, lower, upper):
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(img_hsv, np.array(lower), np.array(upper))
img_mask = cv2.bitwise_and(img, img, mask=mask)
return img_mask
The lower
and upper
parameters will determine the minimum HVS values and the maximum HSV values that will not be masked out of the image. Given the right lower
and upper
parameters, you will be able to extract one image with only the green shapes, and one image with only the blue shapes:
preprocess
function, with values that can be tweaked whenever necessary:def get_processed(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_blur = cv2.GaussianBlur(img_gray, (7, 7), 7)
img_canny = cv2.Canny(img_blur, 50, 50)
kernel = np.ones((7, 7))
img_dilate = cv2.dilate(img_canny, kernel, iterations=2)
img_erode = cv2.erode(img_dilate, kernel, iterations=2)
return img_erode
Passing in the masked images will give you
def get_contours(img):
contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
return [cnt for cnt in contours if cv2.contourArea(cnt) > 500]
The list comprehension at the return
statement is there to filter out noise by specifying that every contour must have an area that is greater than 500.
def get_centeroid(cnt):
length = len(cnt)
sum_x = np.sum(cnt[..., 0])
sum_y = np.sum(cnt[..., 1])
return int(sum_x / length), int(sum_y / length)
def get_pt_at_angle(pts, pt, ang):
angles = np.rad2deg(np.arctan2(*(pt - pts).T))
angles = np.where(angles < -90, angles + 450, angles + 90)
found= np.rint(angles) == ang
if np.any(found):
return pts[found][0]
The names of the functions are pretty self-explanatory; the first one returns the center point of a contour, and the second one returns a point in a given array of points, pts
, that is at a given angle, ang
, relative to a given point, pt
. The np.where
in the get_pt_at_angle
function is there to shift the starting angle, 0
, to the positive x axis, as it by default will be at the positive y axis.
def get_distances(img, cnt1, cnt2, center, step):
A brief explanation on each parameter:
img
, the image arraycnt1
, the first shapecnt2
, the second shapecenter
, the origin for the distance calculationsstep
, the number of degrees to be jumped per value angles = dict()
angle
, relative to the origin point, center
, using the get_pt_at_angle
function we defined earlier. for angle in range(0, 360, step):
pt1 = get_pt_at_angle(cnt1, center, angle)
pt2 = get_pt_at_angle(cnt2, center, angle)
if np.any(pt1) and np.any(pt2):
np.linalg.norm
method to get the distance between the two points. I also made it draw the text and connecting lines for visualization. Don't forget to add the angle and value to the angles
dictionary, and you can then break out of the inner for
loop. At the end of the function, return the image that has the text and lines drawn on it: d = round(np.linalg.norm(pt1 - pt2))
cv2.putText(img, str(d), tuple(pt1), cv2.FONT_HERSHEY_PLAIN, 0.8, (0, 0, 0))
cv2.drawContours(img, np.array([[center, pt1]]), -1, (255, 0, 255), 1)
angles[angle] = d
return img, angles
img = cv2.imread("shapes1.png")
img_green = get_masked(img, [10, 0, 0], [70, 255, 255])
img_blue = get_masked(img, [70, 0, 0], [179, 255, 255])
img_green_processed = get_processed(img_green)
img_blue_processed = get_processed(img_blue)
img_green_contours = get_contours(img_green_processed)
img_blue_contours = get_contours(img_blue_processed)
Using the image of four shapes, you can tell that the img_green_contours
and img_blue_contours
will each contain two contours. But you might be wondering: how did I choose the minimum and maximum HSV values? Well, I used a trackbar code. You can run the below code, adjusting the HSV values using the trackbars until you find a range where everything in the image is masked out (in black) except for the shape you want to retrieve:
import cv2
import numpy as np
def empty(a):
pass
cv2.namedWindow("TrackBars")
cv2.createTrackbar("Hue Min", "TrackBars", 0, 179, empty)
cv2.createTrackbar("Hue Max", "TrackBars", 179, 179, empty)
cv2.createTrackbar("Sat Min", "TrackBars", 0, 255, empty)
cv2.createTrackbar("Sat Max", "TrackBars", 255, 255, empty)
cv2.createTrackbar("Val Min", "TrackBars", 0, 255, empty)
cv2.createTrackbar("Val Max", "TrackBars", 255, 255, empty)
img = cv2.imread("shapes0.png")
while True:
h_min = cv2.getTrackbarPos("Hue Min", "TrackBars")
h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")
s_min = cv2.getTrackbarPos("Sat Min", "TrackBars")
s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")
v_min = cv2.getTrackbarPos("Val Min", "TrackBars")
v_max = cv2.getTrackbarPos("Val Max", "TrackBars")
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
lower = np.array([h_min, s_min, v_min])
upper = np.array([h_max, s_max, v_max])
mask = cv2.inRange(img_hsv, lower, upper)
img_masked = cv2.bitwise_and(img, img, mask=mask)
cv2.imshow("Image", img_masked)
if cv2.waitKey(1) & 0xFF == ord("q"): # If you press the q key
break
With the values I chose, I got:
get_centeroid
function we defined earlier:for cnt_blue, cnt_green in zip(img_blue_contours, img_green_contours[::-1]):
center = get_centeroid(cnt_blue)
img, angles = get_distances(img, cnt_green.squeeze(), cnt_blue.squeeze(), center, 30)
print(angles)
Notice that I used 30
as the step; that number can be changed to 4
, I used 30
so the visualization would be more clear.
cv2.imshow("Image", img)
cv2.waitKey(0)
Altogether:
import cv2
import numpy as np
def get_masked(img, lower, upper):
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(img_hsv, np.array(lower), np.array(upper))
img_mask = cv2.bitwise_and(img, img, mask=mask)
return img_mask
def get_processed(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_blur = cv2.GaussianBlur(img_gray, (7, 7), 7)
img_canny = cv2.Canny(img_blur, 50, 50)
kernel = np.ones((7, 7))
img_dilate = cv2.dilate(img_canny, kernel, iterations=2)
img_erode = cv2.erode(img_dilate, kernel, iterations=2)
return img_erode
def get_contours(img):
contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
return [cnt for cnt in contours if cv2.contourArea(cnt) > 500]
def get_centeroid(cnt):
length = len(cnt)
sum_x = np.sum(cnt[..., 0])
sum_y = np.sum(cnt[..., 1])
return int(sum_x / length), int(sum_y / length)
def get_pt_at_angle(pts, pt, ang):
angles = np.rad2deg(np.arctan2(*(pt - pts).T))
angles = np.where(angles < -90, angles + 450, angles + 90)
found= np.rint(angles) == ang
if np.any(found):
return pts[found][0]
def get_distances(img, cnt1, cnt2, center, step):
angles = dict()
for angle in range(0, 360, step):
pt1 = get_pt_at_angle(cnt1, center, angle)
pt2 = get_pt_at_angle(cnt2, center, angle)
if np.any(pt1) and np.any(pt2):
d = round(np.linalg.norm(pt1 - pt2))
cv2.putText(img, str(d), tuple(pt1), cv2.FONT_HERSHEY_PLAIN, 0.8, (0, 0, 0))
cv2.drawContours(img, np.array([[center, pt1]]), -1, (255, 0, 255), 1)
angles[angle] = d
return img, angles
img = cv2.imread("shapes1.png")
img_green = get_masked(img, [10, 0, 0], [70, 255, 255])
img_blue = get_masked(img, [70, 0, 0], [179, 255, 255])
img_green_processed = get_processed(img_green)
img_blue_processed = get_processed(img_blue)
img_green_contours = get_contours(img_green_processed)
img_blue_contours = get_contours(img_blue_processed)
for cnt_blue, cnt_green in zip(img_blue_contours, img_green_contours[::-1]):
center = get_centeroid(cnt_blue)
img, angles = get_distances(img, cnt_green.squeeze(), cnt_blue.squeeze(), center, 30)
print(angles)
cv2.imshow("Image", img)
cv2.waitKey(0)
Output:
{0: 5, 30: 4, 60: 29, 90: 25, 120: 31, 150: 8, 180: 5, 210: 7, 240: 14, 270: 12, 300: 14, 330: 21}
{0: 10, 30: 9, 60: 6, 90: 0, 120: 11, 150: 7, 180: 5, 210: 6, 240: 6, 270: 4, 300: 0, 330: 16}
Note: For certain shapes, some angles might be absent in the dictionary. That would be caused by the process
function; you would get more accurate results if you turn down some of the values, like the blur sigma
Upvotes: 5
Reputation: 18905
I borrowed the general idea using Shapely and the basic code from tfv's answer. Nevertheless, iterating the desired angles, calculating the needed end points for the correct lines to be intersected with the shapes, calculating and storing the distances, etc. were missing, so I added all that.
That'd be my full code:
import cv2
import numpy as np
import shapely.geometry as shapgeo
# Read image, and binarize
img = cv2.imread('G48xu.jpg', cv2.IMREAD_GRAYSCALE)
img = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY)[1]
# Find (approximated) contours of inner and outer shape
cnts, hier = cv2.findContours(img.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
outer = [cv2.approxPolyDP(cnts[0], 0.1, True)]
inner = [cv2.approxPolyDP(cnts[2], 0.1, True)]
# Just for visualization purposes: Draw contours of inner and outer shape
h, w = img.shape[:2]
vis = np.zeros((h, w, 3), np.uint8)
cv2.drawContours(vis, outer, -1, (255, 0, 0), 1)
cv2.drawContours(vis, inner, -1, (0, 0, 255), 1)
# Squeeze contours for further processing
outer = np.vstack(outer).squeeze()
inner = np.vstack(inner).squeeze()
# Calculate centroid of inner contour
M = cv2.moments(inner)
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])
# Calculate maximum needed radius for later line intersections
r_max = np.min([cx, w - cx, cy, h - cy])
# Set up angles (in degrees)
angles = np.arange(0, 360, 4)
# Initialize distances
dists = np.zeros_like(angles)
# Prepare calculating the intersections using Shapely
poly_outer = shapgeo.asLineString(outer)
poly_inner = shapgeo.asLineString(inner)
# Iterate angles and calculate distances between inner and outer shape
for i, angle in enumerate(angles):
# Convert angle from degrees to radians
angle = angle / 180 * np.pi
# Calculate end points of line from centroid in angle's direction
x = np.cos(angle) * r_max + cx
y = np.sin(angle) * r_max + cy
points = [(cx, cy), (x, y)]
# Calculate intersections using Shapely
poly_line = shapgeo.LineString(points)
insec_outer = np.array(poly_outer.intersection(poly_line))
insec_inner = np.array(poly_inner.intersection(poly_line))
# Calculate distance between intersections using L2 norm
dists[i] = np.linalg.norm(insec_outer - insec_inner)
# Just for visualization purposes: Draw lines for some examples
if (i == 10) or (i == 40) or (i == 75):
# Line from centroid to end points
cv2.line(vis, (cx, cy), (int(x), int(y)), (128, 128, 128), 1)
# Line between both shapes
cv2.line(vis,
(int(insec_inner[0]), int(insec_inner[1])),
(int(insec_outer[0]), int(insec_outer[1])), (0, 255, 0), 2)
# Distance
cv2.putText(vis, str(dists[i]), (int(x), int(y)),
cv2.FONT_HERSHEY_COMPLEX, 0.75, (0, 255, 0), 2)
# Output angles and distances
print(np.vstack([angles, dists]).T)
# Just for visualization purposes: Output image
cv2.imshow('Output', vis)
cv2.waitKey(0)
cv2.destroyAllWindows()
I generated some examplary output for visualization purposes:
And, here's an excerpt from the output, showing angle and the corresponding distance:
[[ 0 70]
[ 4 71]
[ 8 73]
[ 12 76]
[ 16 77]
...
[340 56]
[344 59]
[348 62]
[352 65]
[356 67]]
Hopefully, the code is self-explanatory. If not, please don't hesitate to ask questions. I'll gladly provide further information.
----------------------------------------
System information
----------------------------------------
Platform: Windows-10-10.0.16299-SP0
Python: 3.9.1
NumPy: 1.20.2
OpenCV: 4.5.1
Shapely: 1.7.1
----------------------------------------
Upvotes: 2
Reputation: 6259
In the following code, I have just given you the example for the vertical line, the rest can be obtained by rotating the line. Result looks like this, instead of drawing you can use the coordinates for distance calculation.
import shapely.geometry as shapgeo
import numpy as np
import cv2
img = cv2.imread('image.jpg', 0)
ret, img =cv2.threshold(img, 128, 255, cv2.THRESH_BINARY)
#Fit the ellipses
_, contours0, hierarchy = cv2.findContours( img.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
outer_ellipse = [cv2.approxPolyDP(contours0[0], 0.1, True)]
inner_ellipse = [cv2.approxPolyDP(contours0[2], 0.1, True)]
h, w = img.shape[:2]
vis = np.zeros((h, w, 3), np.uint8)
cv2.drawContours( vis, outer_ellipse, -1, (255,0,0), 1)
cv2.drawContours( vis, inner_ellipse, -1, (0,0,255), 1)
##Extract contour of ellipses
cnt_outer = np.vstack(outer_ellipse).squeeze()
cnt_inner = np.vstack(inner_ellipse).squeeze()
#Determine centroid
M = cv2.moments(cnt_inner)
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
print cx, cy
#Draw full segment lines
cv2.line(vis,(cx,0),(cx,w),(150,0,0),1)
# Calculate intersections using Shapely
# http://toblerity.org/shapely/manual.html
PolygonEllipse_outer= shapgeo.asLineString(cnt_outer)
PolygonEllipse_inner= shapgeo.asLineString(cnt_inner)
PolygonVerticalLine=shapgeo.LineString([(cx,0),(cx,w)])
insecouter= np.array(PolygonEllipse_outer.intersection(PolygonVerticalLine)).astype(np.int)
insecinner= np.array(PolygonEllipse_inner.intersection(PolygonVerticalLine)).astype(np.int)
cv2.line(vis,(insecouter[0,0], insecinner[1,1]),(insecouter[1,0], insecouter[1,1]),(0,255,0),2)
cv2.line(vis,(insecouter[0,0], insecinner[0,1]),(insecouter[1,0], insecouter[0,1]),(0,255,0),2)
cv2.imshow('contours', vis)
0xFF & cv2.waitKey()
cv2.destroyAllWindows()
Upvotes: 3