Reputation: 14112
I'm trying to loop over a set of tables in a particular way but I'm stuck.
My tables are multiindex and look like this:
#read excel
df = pd.read_excel(data_file,
header=[0,1],
index_col=[0,1])
T Gender Age
Total Male Female 16-24 25-34 35-44 45-54 55-75
Q1. Are you? Yes 17.5 26.8 23.4 13.7 20.7 100 - 17.6
No 17.5 26.8 23.4 13.7 20.7 100 11.5 22.6
Don’t know 17.5 26.8 23.4 13.7 20.7 100 - -
Q2. Are you? Yes 18.5 26.8 23.4 13.7 20.7 100 - 17.6
No 17.5 22.8 23.4 13.7 20.7 100 11.5 22.6
Don’t know 17.5 26.8 23.4 13.7 20.7 100 - -
I would like to loop over these indexes and columns and print this:
T
Total
Q1. Are you? Yes 17.5
No 17.5
Don’t know 17.5
Gender
Male Female
Q1. Are you? Yes 26.8 23.4
No 26.8 23.4
Don’t know 26.8 23.4
and so forth....
My code so far groups the outter indexs together which allows me to loop downwards but I dont know how to work my way across horizontally..?
for outerside_grp, innerside_grp in df.groupby(level=0):
print innerside_grp
UPDATE
Code below kinda of does what I want (thanks to Joshua Baboo) but now I'm wondering if it's the most effient method?
for key in df.index.levels[0]:
for col in df.columns.levels[0]:
print df.loc[row:row, col]
Upvotes: 0
Views: 869
Reputation: 525
as you've said:
'My tables are multiindex'
assuming the groupby(level=0)
is not required, as the original dataframe is in 2 level MultiIndex structure on both row & column axes, see if the following sample servers your purpose:
import pandas as pd
print 'pandas-version: ', pd.__version__
import numpy a`enter code here`s np
l1 = ['r0_1', 'r0_2']
l2 = sorted(['r1_1','r1_2','r1_3'])
c1 = ['c0_1', 'c0_2', 'c0_3']
c2 = ['c1_1', 'c1_2', 'c1_3']
nrows = len(l1) * len(l2)
ncols = len(c1) * len(c2)
df = pd.DataFrame(np.random.random( nrows * ncols).reshape(nrows, ncols),
index=pd.MultiIndex.from_product([l1, l2],
names=['one','two']),
columns=pd.MultiIndex.from_product([c1, c2]))
l_all = slice(None)
# updated loop only over columns.level[0]
# to get all-rows for each column group
for col0 in df.columns.levels[0]:
print df.loc(axis=1)[col0,:]
pandas-version: 0.15.2
c0_1
c1_1 c1_2 c1_3
one two
r0_1 r1_1 0.177051 0.159676 0.677900
r1_2 0.980404 0.441649 0.763252
r1_3 0.631876 0.724937 0.158891
r0_2 r1_1 0.856933 0.432360 0.690534
r1_2 0.568308 0.381117 0.430071
r1_3 0.680781 0.795433 0.378414
c0_2
c1_1 c1_2 c1_3
one two
r0_1 r1_1 0.275005 0.266315 0.326656
r1_2 0.841370 0.197737 0.215751
r1_3 0.511860 0.007003 0.509688
r0_2 r1_1 0.170542 0.577844 0.616402
r1_2 0.440131 0.497631 0.628281
r1_3 0.061970 0.192166 0.687346
c0_3
c1_1 c1_2 c1_3
one two
r0_1 r1_1 0.308490 0.372552 0.275818
r1_2 0.718901 0.784083 0.839253
r1_3 0.357739 0.821503 0.336578
r0_2 r1_1 0.758157 0.248164 0.983741
r1_2 0.498885 0.972781 0.922519
r1_3 0.107162 0.364109 0.591648
Upvotes: 1