Reputation: 39
I would like to determine the dot product between the ith column in one matrix and the ith column in a second matrix. The end result will be an array containing i dot products.
Here is a reproducible example of what I want to do:
#Generate two matrices with 10 columns each with 5 rows (thus i in this case is 10)
m1 <- replicate(10, rnorm(5))
m2 <- replicate(10, rnorm(5))
#Inefficiently calculate dot product of ith column in m1 with ith column in m2
d1 <- t(m1[,1]) %*% m2[,1]
d2 <- t(m1[,2]) %*% m2[,2]
...
d10 <- t(m1[,10]) %*% m2[,10]
#End with all dot products in array
d.final <- c(d1, d2, d10)
Any help here will be appreciated!
Ken
Upvotes: 1
Views: 2122
Reputation: 25874
Here are a few options
The clearest option (imo) is to use a loop
out1 <- sapply(1:10, function(i) crossprod(m1[,i], m2[,i]))
or calculate the full matrix cross product
out2 <- diag(crossprod(m1, m2))
or by summing element-wise multiplication
out3 <- colSums(m1*m2)
check
all.equal(out1, out2)
all.equal(out3, out2)
A little benchmark
f1 <- function() sapply(1:ncol(m1), function(i) crossprod(m1[,i], m2[,i]))
f2 <- function() diag(crossprod(m1, m2))
f3 <- function() colSums(m1*m2)
# on your data
microbenchmark::microbenchmark(f1(), f2(), f3())
# Unit: microseconds
# expr min lq mean median uq max neval cld
# f1() 62.508 65.2325 69.46337 66.873 70.9945 123.271 100 b
# f2() 8.312 9.4290 12.05529 9.778 10.2670 229.708 100 a
# f3() 11.385 12.4325 16.14248 12.921 13.5500 310.235 100 a
# on bigger data
m1 <- replicate(1000, rnorm(1000))
m2 <- replicate(1000, rnorm(1000))
all.equal(f1(), f2())
all.equal(f2(), f3())
microbenchmark::microbenchmark(f1(), f3()) #f2 took too long
# Unit: milliseconds
# expr min lq mean median uq max neval cld
# f1() 35.181220 38.065454 41.59141 39.93301 42.17569 82.13914 100 b
# f3() 8.349807 9.220799 11.13763 10.19330 11.21829 53.57050 100 a
Upvotes: 2