Reputation: 875
I would like to experiment the weights initialization recommended by Karpathy in his lecture notes,
the recommended heuristic is to initialize each neuron's weight vector as: w = np.random.randn(n) / sqrt(n), where n is the number of its inputs
source: http://cs231n.github.io/neural-networks-2/#init
I'm beginner in python, and I don"t know how to implement this :/
weights = tf.Variable(??)
Please help? ...
Upvotes: 2
Views: 2284
Reputation: 868
I do it in the following way:
self.w_full, self.b_full = [], []
n_fc_layers = len(structure)
structure.insert(0, self.n_inputs)
with vs.variable_scope(self.scope):
for lr_idx in range(n_fc_layers):
n_in, n_out = structure[lr_idx], structure[lr_idx+1]
self.w_full.append(
vs.get_variable(
"FullWeights{}".format(lr_idx),
[n_in, n_out],
dtype=tf.float32,
initializer=tf.random_uniform_initializer(
minval=-tf.sqrt(tf.constant(6.0)/(n_in + n_out)),
maxval=tf.sqrt(tf.constant(6.0)/(n_in + n_out))
)
)
)
self.b_full.append(
vs.get_variable(
"FullBiases{}".format(lr_idx),
[n_out],
dtype=tf.float32,
initializer=tf.constant_initializer(0.0)
)
)
after
structure.insert(0, self.n_inputs)
you'll have [n_inputs, 1st FC layer size, 2nd FC layer size ... output layer size]
Upvotes: 0
Reputation: 57903
n = 10
init_x = np.random.randn(n)
x = tf.Variable(init_x)
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
print(sess.run(x))
Upvotes: 0
Reputation: 8536
For a single value, use:
weights = tf.Variable(10)
For a vector with random values:
shape = [784, 625]
weights = tf.Variable(tf.random_normal(shape, stddev=0.01)/tf.sqrt(n))
Please note that you need to sess.run to evaluate the variables.
Also, please check out other Random Tensors: https://www.tensorflow.org/versions/r0.8/api_docs/python/constant_op.html#random-tensors
Upvotes: 2