Reputation: 934
Following code I have tried in Online and Offline Z3
(set-option :smt.mbqi true)
(declare-var X Int)
(declare-var X_ Int)
(declare-var a_ Int)
(declare-var su_ Int)
(declare-var t_ Int)
(declare-var N1 Int)
(assert (>= X 0))
(assert (forall ((n1 Int)) (=> (< n1 N1) (>= X (* (+ n1 1) (+ n1 1))))))
(assert (= X_ X))
(assert (= a_ N1))
(assert (= su_ (* (+ N1 1) (+ N1 1))))
(assert (= t_ (* (+ N1 1) 2)))
(assert (< X (* (+ N1 1) (+ N1 1))))
(assert (not (< X (* (+ a_ 1) (+ a_ 1)))))
(check-sat)
Result unsat
Following code I have tried in Z3PY
set_option('smt.mbqi', True)
s=Solver()
s.add(X>=0)
s.add(ForAll(n1,Implies(n1 < N1,((n1+1)**2)<=X)))
s.add(((N1+1)**2)>X)
s.add(X_==X)
s.add(a_==N1)
s.add(su_==((N1+1)**2))
s.add(t_==(2*(N1+1)))
s.add(Not(((a_+1)**2)>X))
result- unknown
Is processing power different?
Upvotes: 0
Views: 397
Reputation: 8393
The reason for the difference in results is because the input is not the same. For instance, the expression
(N1+1)**2
is semantically the same as
(* (+ N1 1) (+ N1 1))
but because of the syntactic difference, Z3 will not simplify the formula to something that it can solve easily. The syntactically equivalent problem in Python is
s.add(X>=0)
s.add(ForAll(n1,Implies(n1 < N1,((n1+1)**2)<=X)))
s.add(((N1+1)*(N1+1)) > X)
s.add(X_==X)
s.add(a_==N1)
s.add(su_==((N1+1)*(N1+1)))
s.add(t_==(2*(N1+1)))
s.add(Not(((a_+1)*(a_+1))>X))
which yields the desired result.
Upvotes: 3
Reputation: 8359
Are the constraints the same? I don't see the python variant of:
(assert (< X (* (+ N1 1) (+ N1 1))))
Upvotes: 0