Reputation: 559
So I am using cuFFT combined with the CUDA stream feature. The problem I have is that I can't seem to make the cuFFT kernels run in full concurrency. The following is the results I have from nvvp. Each of the stream is running a kernel of 2D batch FFT on 128 images of size 128x128. I setup 3 streams to run 3 independent FFT batch plan.
As can be seen from the figure, some memory copies (yellow bars) were in concurrent with some kernel computations (purple, brown and pink bars). But the kernels runs were not in concurrent at all. As you notice each kernel was strictly following each other. The following is the code I used for memory copy to the device and kernel launching.
for (unsigned int j = 0; j < NUM_IMAGES; j++ ) {
gpuErrchk( cudaMemcpyAsync( dev_pointers_in[j],
image_vector[j],
NX*NY*NZ*sizeof(SimPixelType),
cudaMemcpyHostToDevice,
streams_fft[j]) );
gpuErrchk( cudaMemcpyAsync( dev_pointers_out[j],
out,
NX*NY*NZ*sizeof(cufftDoubleComplex),
cudaMemcpyHostToDevice,
streams_fft[j] ) );
cufftExecD2Z( planr2c[j],
(SimPixelType*)dev_pointers_in[j],
(cufftDoubleComplex*)dev_pointers_out[j]);
}
Then I changed my code so that I finished all memory copies (synchronize) and send all kernels to streams at once and I got the following profiling result:
Then I was confirmed that the kernels were not running in a concurrent way.
I looked at one link which explains in details how to setup to utilize full concurrency by either passing "–default-stream per-thread" command line argument or #define CUDA_API_PER_THREAD_DEFAULT_STREAM before you #include or in your code. It is a feature introduced in CUDA 7. I ran the sample code in the above link on my MacBook Pro Retina 15' with GeForce GT750M (The same machine used as in the above link), And I was able to get concurrent kernel runs. But I was not able to get my cuFFT kernels running in parallel.
Then I found this link with someone saying that cuFFT kernel will occupy the whole GPU so no two cuFFT kernels running parallel. Then I was stuck. Since I didn't find any formal documentation addressing whether CUFFT enables concurrent kernels. It this true? Is there a way to get around with this?
Upvotes: 3
Views: 844
Reputation: 152239
I assume you called cufftSetStream()
prior to the code you have shown, appropriate for each planr2c[j]
, so that each plan is associated with a separate stream. I don't see it in the code you posted. If you actually want cufft kernels to overlap with other cufft kernels, it's necessary for those kernels to be launched to separate streams. So the cufft exec call for image 0 would have to be launched into a different stream than the cufft exec call for image 1, for example.
In order for any two CUDA operations to have the possibility to overlap, they must be launched into different streams.
Having said that, concurrent memory copies with kernel execution, but not concurrent kernels, is about what I would expect for reasonable sized FFTs.
A 128x128 FFT to a first order approximation will spin up ~15,000 threads, so if my thread blocks are ~500 threads each, that would be 30 threadblocks, which will keep a GPU fairly occupied, leaving not much "room" for additional kernels. (You can actually discover the total blocks and threads for a kernel in the profiler itself.) Your GT750m probably has 2 Kepler SMs with a maximum of 16 blocks per SM so a max instantaneous capacity of 32 blocks. And this capacity number could be reduced for a specific kernel due to shared memory usage, register usage, or other factors.
The instantaneous capacity of whatever GPU you are running on (max blocks per SM * number of SMs) will determine the potential for overlap (concurrency) of kernels. If you exceed that capacity with a single kernel launch, then that will "fill" the GPU, preventing kernel concurrency for some time period.
It should be theoretically possible for CUFFT kernels to run concurrently. But just like any kernel concurrency scenario, CUFFT or otherwise, the resource usage of those kernels would have to be pretty low to actually witness concurrency. Typically when you have low resource usage, it implies kernels with a relatively small number of threads/threadblocks. These kernels don't usually take long to execute, making it even more difficult to actually witness concurrency (because launch latency and other latency factors may get in the way). The easiest way to witness concurrent kernels is to have kernels with unusually low resource requirements combined with unusually long run times. This is generally not the typical scenario, for CUFFT kernels or any other kernels.
Overlap of copy and compute is a still a useful feature of streams with CUFFT. And the concurrency idea, without a basis of understanding of the machine capacity and resource constraints, is somewhat unreasonable in itself. For example, if kernel concurrency was an arbitrary achievable ("I should be able to make any 2 kernels run concurrently"), without consideration to capacity or resource specifics, then after you get two kernels running concurrently, the next logical step would be to go to 4, 8, 16 kernels concurrently. But the reality is that the machine can't handle that much work simultaneously. Once you've exposed enough parallelism (loosely translated as "enough threads") in a single kernel launch, exposing additional work parallelism via additional kernel launches normally cannot make the machine run any faster, or process the work quicker.
Upvotes: 2