Reputation: 23
I would like to create a sparse matrix with values of 1 in specific locations. Is there a way to do that in numpy?
For instance, if I have a list a = [6,8,8,10,10,8,8,6]
, I would like to create a matrix of dimensions (len(a),max(a))
that looks like:
[[0,0,1,1,1,1,1,1,0,0],
[0,1,1,1,1,1,1,1,1,0],
[0,1,1,1,1,1,1,1,1,0],
[1,1,1,1,1,1,1,1,1,1],
[1,1,1,1,1,1,1,1,1,1],
[0,1,1,1,1,1,1,1,1,0],
[0,1,1,1,1,1,1,1,1,0],
[0,0,1,1,1,1,1,1,0,0],
]
Basically it is a numpy.zeros((len(a),max(a)))
matrix with ones in locations specified by the list a.
I am trying to use pad, but I can't seem to figure out a way to do it.
Upvotes: 2
Views: 131
Reputation: 221554
Here's a vectorized approach using NumPy broadcasting
-
arr = np.array(a)
N = arr.max()
Nr = np.arange(N)
diffs = (N - arr)//2
out = (((arr + diffs)[:,None] > Nr) & (diffs[:,None] <= Nr)).astype(int)
Please note that for an odd number in a
, it would have one more zero on the right side bunch than one on the left. Here's a sample run to illustrate that -
In [55]: a
Out[55]: [6, 8, 8, 10, 10, 8, 8, 5] # last element changed to 5
In [56]: arr = np.array(a)
...: N = arr.max()
...: Nr = np.arange(N)
...: diffs = (N - arr)//2
...: out = (((arr + diffs)[:,None] > Nr) & (diffs[:,None] <= Nr)).astype(int)
...:
In [57]: out
Out[57]:
array([[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 0, 0, 0]])
Upvotes: 2
Reputation: 31171
One way would be - provided you only have even numbers:
import numpy as np
def func(i, m):
arr = np.repeat(0, (m-i)/2)
np.concatenate([arr, np.repeat(1, i), arr])
np.vstack([func(i, max(a)) for i in a])
Out[118]:
array([[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 1, 1, 1, 0, 0]])
Upvotes: 1