Reputation: 53
With gcd its fairly easy but i do not understand how to tie in all the functions to make it happen without.
kgv :: Int -> Int -> Int
kgv x y = abs ((x `quot` (gcd x y)) * y)
I got this function to find the prime factors which works (prime_factors
) and I am working on making a function that takes the maximum number from one list and checks if its on the other list (comp
):
prime_factors :: Int -> [Int]
prime_factors 1 = []
prime_factors n
| factors == [] = [n]
| otherwise = factors ++ prime_factors (n `div` (head factors))
where factors = take 1 $ filter (\x -> (n `mod` x) == 0) [2 .. n-1]
comp :: [Int]->Int
comp (ys)(x:xs)
|maximum prime_factors xs elem prime_factors ys == x
|otherwise tail x
kgv :: Int -> Int -> Int
kgv x y = abs ((x `quot` (comp x y)) * y)
Upvotes: 1
Views: 698
Reputation: 53
I figured it out myself mostly. Thanks for the ideas and pointers.
ggt n m | n > m = maximum [t | t <- [1 .. m], gt n m t]
| otherwise = maximum [t | t <- [1 .. n], gt n m t]
gt n m c = t n c && t m c
t n c | n >= c = (mod n c == 0)
| otherwise = False
kgv :: Int -> Int -> Int
kgv x y |x==0=0|y==0=0 |otherwise = abs ((x `quot` (ggt x y)) * y)
Upvotes: 0
Reputation: 48611
Here's an absurdly simple and obscenely inefficient solution:
lcm m n = head [x | x <- [1..], x `rem` m == 0, x `rem` n == 0]
Of course, this relies on two different notions of "least" coinciding under the circumstances, which they do. A fully naive solution doesn't seem possible.
Upvotes: 3
Reputation: 67507
perhaps another easy way is
import Data.List(intersect)
lcm m n = head $ intersect (series m n) (series n m)
where series a b = take a $ map (*b) [1..]
Upvotes: 3
Reputation: 52290
here is the (very) naive algorithm I was talking about:
kgv :: (Ord a, Num a) => a -> a -> a
kgv x y = find x y
where find i j
| i == j = i
| i < j = find (i+x) j
| i > j = find i (j+y)
it's basically what a school-child would do ;)
caution I ignored negative numbers and 0 - you'll probably have to handle those
Upvotes: 3