Reputation: 2442
I have a csv file in which there are always two first columns, but with varying number of columns for different files. The csv can look like this:
Gondi,4012,227,233,157,158,149,158
Gondi,4013,227,231,156,159,145,153
Gondu,4014,228,233,157,158,145,153
Gondu,4015,227,231,156,159,149,158
For now I am working with NumPy
, and my code for loading this data is:
import numpy as np
def readfile(fname):
with open(fname) as f:
ncols = len(f.readline().split(','))
name = np.loadtxt(fname, delimiter=',', usecols=[0],dtype=str)
ind = np.loadtxt(fname, delimiter=',', usecols=[1],dtype=int)
data = np.loadtxt(fname, delimiter=',', usecols=range(2,ncols),dtype=int)
return data,name,ind
Can I do the same thing with pandas
more efficiently?
Upvotes: 2
Views: 99
Reputation: 862501
I think you can use read_csv
and iloc
for select first, second and other columns:
import pandas as pd
import io
temp=u"""Gondi,4012,227,233,157,158,149,158
Gondi,4013,227,231,156,159,145,153
Gondu,4014,228,233,157,158,145,153
Gondu,4015,227,231,156,159,149,158"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), header=None)
print df
name = df.iloc[:,0]
print name
0 Gondi
1 Gondi
2 Gondu
3 Gondu
Name: 0, dtype: object
ind = df.iloc[:,1]
print ind
0 4012
1 4013
2 4014
3 4015
Name: 1, dtype: int64
data = df.iloc[:,2:]
print data
2 3 4 5 6 7
0 227 233 157 158 149 158
1 227 231 156 159 145 153
2 228 233 157 158 145 153
3 227 231 156 159 149 158
Upvotes: 1