Reputation: 11
I just started programming last week, so please be gentle ;)
What I try to do is a linear fit with curve_fit to determine the two contributions to the slope. I tried:
import os
from os import listdir
from os.path import isfile, join
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.axes as ax
from scipy import asarray as ar,exp
freq_lw_tuple = [('10.0', 61.32542701946727), ('10.5', 39.367147015318501), ('11.0', 58.432147581817077), ('11.5', 68.819336676144317), ('12.0', 71.372078906193025), ('12.5', 73.113662907539336), ('13.0', 75.855316075062603), ('13.5', 76.798724771266322), ('14.0', 79.065657225891329), ('14.5', 81.637345805693897), ('15.0', 82.407248034320034)]
def func_lw(x_lw,alpha,g):
return (alpha/g)*x_lw
#define constants
m_e = 9.109383*(10**(-31)) #mass of electron in [kg]
q_e = 1.602176*(10**(-19)) #value of electron charge
pi = 3.14159 #pi
#unzip the list of tuples
unzipped = list(zip(*freq_lw_tuple))
xval_list = []
yval_list = []
for k in range(0,len(unzipped[0])):
x_value = (8/np.sqrt(3))*((2*pi*m_e*float(unzipped[0][k])*10**9)/q_e) #calculate x values
xval_list.append(x_value)
y_value = unzipped[1][k]*10**(-4)*4*pi*10**(-7) #transform unit of y values
yval_list.append(y_value)
start_params2 = [0.01,2]
fitted_params, pcov = curve_fit(func_lw, xval_list, yval_list, start_params2)
And it actually gives some results, but when I want to
print(func_lw(xval_list,*fitted_params))
I just get an empty list and probably that is the reason why I can't
plt.plot(xval_list, func_lw(xval_list, *fitted_params))
(This gives an error like: x and y must have same first dimensions)
[Edit: added some data for freq_lw_tuple and imports]
Upvotes: 0
Views: 4913
Reputation: 5435
Python cannot multiply lists and scalars.
That's why you imported from scipy import asarray as ar
. You could have used numpy
as well.
So when you call func_lw
you should give it an array, not a list.
func_lw(ar(xval_list), fitted_params[0], fitted_params[1] )
plt.plot(ar(xval_list), func_lw(ar(xval_list), *fitted_params))
plt.scatter(ar(xval_list), ar(yval_list))
Regarding the optimisation function, you really only have one parameter (the slope) if you use (alpha/g)*x_lw
in the formula. I'd use instead
def func_lw(x_lw, slope, offset):
return slope*x_lw + offset
Edit: By the way, you should use "list comprehension", and do something like
xval_list = [(8/np.sqrt(3))*((2*pi*m_e*float(x)*10**9)/q_e) for x, y in freq_lw_tuple]
yval_list = [y*10**(-4)*4*pi*10**(-7) for x, y in freq_lw_tuple]
Upvotes: 1