Reputation: 29
Alloy 97-1-1-1 Alloy AuCa
Dentist Method 1500°F 1600°F 1700°F 1500°F 1600°F 1700°F
1 1 813 792 792 907 792 835
2 782 698 665 1115 835 870
3 752 620 835 847 560 585
2 1 715 803 813 858 907 882
2 772 782 743 933 792 824
3 835 715 673 698 734 681
3 1 743 627 752 858 762 724
2 813 743 613 824 847 782
3 743 681 743 715 824 681
4 1 792 743 762 894 792 649
2 690 882 772 813 870 858
3 493 707 289 715 813 312
5 1 707 698 715 772 1048 870
2 803 665 752 824 933 835
3 421 483 405 536 405 312
here is my sas code for the above data:
data gold;
do dentist=1, 2, 3, 4, 5;
do method=1, 2, 3;
do alloy= 1,2;
do temp=1500, 1600, 1700;
input y @@; output;
end;
end;
end;
end;
cards;
813 792 792 907 792 835
782 698 665 1115 835 870
752 620 835 847 560 585
715 803 813 858 907 882
772 782 743 933 792 824
835 715 673 698 734 681
743 627 752 858 762 724
813 743 613 824 847 782
743 681 743 715 824 681
792 743 762 894 792 649
690 882 772 813 870 858
493 707 289 715 813 312
707 698 715 772 1048 870
803 665 752 824 933 835
421 483 405 536 405 312
;
ODS graphics on;
proc GLM data=gold;
class dentist method alloy temp;
model y=dentist|method|alloy|temp;
run; quit;
Where did I go wrong?
here is a part of the output:
The GLM Procedure
Dependent Variable: y
Source DF Sum of Squares Mean Square F Value Pr > F
Model 89 1891095.556 21248.265 . .
Error 0 0.000 .
Total 89 1891095.556
R-Square Coeff Var Root MSE y Mean
1.000000 . . 741.7778
the error is supposed to be
Residuals 75772.0 16 4735.7
the residuals/error is not suppose to be 0, because of that whole code is wrong. :(
I also need to know how I could create an interaction plot/graph for the above code. any help with my code would be highly appreciated.
Upvotes: 0
Views: 787
Reputation: 3845
You have only 90 measurements, resulting in a model with 89 degrees of freedom (DF). To fit those, you are using
GLM
to 8 DF
and so forth.
In short, you allow the GLM
procedure to choose 1 intercept plus 89 other DF to fit only 90 values. GLM
can produce a model that fits your data exactly. No wonder the model is without error!
Introduce fake measurements which slightly differ from the real ones, for instance this way
data gold;
do dentist=1, 2, 3, 4, 5;
do method=1, 2, 3;
do alloy= 1,2;
do temp=1500, 1600, 1700;
input y @@;
output;
Y +.1 * rand('NORMAL', 0, 500);
output;
end;
end;
end;
end;
cards;
Now your output might look like
Source DF Sum of Squar Mean Square F Value Pr > F
Model 89 19556981.91 219741.37 1.45 0.0403
Error 90 13643754.57 151597.27
Corrected To 179 33200736.48
R-Square Coeff Root MSE y Mean
0.589053 51.89 389.3549 750.2041
(not exactly, as I introduced some randomness)
Indeed, you still give GLM
one intercept and 89 factors (DF) to choose, but you ask it to fit 180 values (1 intercept and 179 DF)
_(unless you ask the dentists to do 90 extra measurements) is to choose a simpler model. I suppose you are not interested in evaluating dentists, but only techniques, i.e. methods, alloys and temperatures, so write
proc GLM data=gold;
class dentist method alloy temp;
model y=method|alloy|temp; ** <- nothing about dentists here **;
run; quit;
and the result will be:
Dependent Variable: y
Source DF Sum of Squar Mean Square F Value Pr > F
Model 17 905055.156 53238.539 3.89 <.0001
Error 72 986040.4 13695.006
Corrected Total 89 1891095.556
R-Square Coeff Var Root MSE y Mean
0.478588 15.77638 117.0257 741.7778
This tells you the simpler model so much more about your numbers (Mean Square 53238.539) than the 'error' it does not explain _(Mean Square 13695.006) that it is extremely improbable (less than 0.01% probable) that this is by chance.
The last part of your output
Source DF Type III SS Mean Square F Value Pr > F
method 2 593427.4889 296713.7444 21.67 <.0001
alloy 1 105815.5111 105815.5111 7.73 0.0069
method*alloy 2 54685.0889 27342.5444 2 0.1433
temp 2 82178.0222 41089.0111 3 0.056
method*temp 4 30652.4444 7663.1111 0.56 0.6927
alloy*temp 2 21725.3556 10862.6778 0.79 0.4563
method*alloy*temp 4 16571.2444 4142.8111 0.3 0.8754
tells you that
That is what I would conclude from your experiment.
Upvotes: 1