Reputation: 23
I'm currently trying to convert 44/7 to half-precision floating point format. I'm not sure if I've done it correctly so far, so I'd really appreciate it if someone could have a look at it.
44/7 = 6,285714285714...
6 in dual -> 110;
0.285714 * 2 = 0,571428 -> 0
0.571428 * 2 = 1.142856 -> 1
0.142856 * 2 = 0.285714 -> 0
... -> 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1...
-> 110, 01001001001001
-> 1,1001001001001001 -> exponent: 2;
Bias + Exponent : 2+15 = 17 => 1 0 0 0 1
All stitched together: 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1
I've never converted decimal to 16bit IEEE754, is this the correct way of converting it? Thanks a lot!
Upvotes: 2
Views: 3823
Reputation: 416
Correct. As you might expect, it is quantized to 6.28515625.
0100011001001001(base 2) = 4649(base 16)
6.2857142857139996
= H(4649)
= F(40C92492)
= D(40192492 49249107)
= A(0X1.92492492491070P+2)
6.28515625
= H(4649)
= F(40C92000)
= D(40192400 00000000)
= A(0X1.92400000000000P+2)
Other data points:
+0. 0000
-0. 8000
-1. BC00
+1. 3C00
+2. 4000
+4. 4400
+8. 4800
+16. 4C00
+32768. 7800
+Max 7BFF 65504
+.5f 3800
+.25f 3400
+.125f 3000
+.0625f 2C00
+MinNorm 0400 +6.103515625e-05
-MinNorm 8400 -6.103515625e-05
+MinDenorm 0001 +5.9604644775390625e-08
-MinDenorm 8001 -5.9604644775390625e-08
+Infinity 7C00
-Infinity FC00
+NaN(0) 7E00
-NaN(0) FE00
Upvotes: 1