Reputation: 187
I used this answer to plot 15 barplots (side-by-side) in one PDF page. The issue is the figures quality becomes very small.
dat <- read.table("data.txt",header=TRUE)
pdf('plot.pdf')
m <- rbind(c(1,2,3), c(4,5,6),c(7,8,9),c(10,11,12),c(13,14,15))
layout(m)
barcols <- c("red","blue","green","orange","black","yellow")
sp <- split(dat, dat$Project)
sapply(seq_along(sp),
function(x) {
dd <- sp[[x]]
m <- t(`rownames<-`(as.matrix(dd[, -(1:2)]), dd[, 1]))
bp <- barplot(m,ylim=c(0, 0.4),beside=TRUE,col=barcols)
title(main=names(sp[x]))
# abline(h=0)
}
)
plot(NA,xlim=c(0,1),ylim=c(0,1),ann=FALSE,axes=FALSE)
legend(0,0.6,c("C10","C10","C03","C11","C16","C08"),fill=barcols,cex=1.5)
dev.off()
The result of the above code as follow:
Would it be possible to resize the figures, in order to make x-axis data readable?
The data format as follow:
Topic Project C10 C14 C03 C11 C16 C08
T1 P1 0.24 0.00 0.00 0.04 0.04 0.00
T2 P1 0.00 0.30 0.00 0.00 0.00 0.00
T3 P1 0.04 0.04 0.00 0.24 0.00 0.00
T4 P1 0.00 0.00 0.00 0.04 0.33 0.04
T5 P1 0.00 0.09 0.21 0.00 0.00 0.00
T6 P1 0.00 0.09 0.00 0.00 0.00 0.34
T1 P2 0.20 0.00 0.00 0.04 0.00 0.04
T2 P2 0.00 0.22 0.04 0.00 0.00 0.00
T3 P2 0.04 0.00 0.00 0.24 0.00 0.00
T4 P2 0.00 0.00 0.04 0.00 0.33 0.00
T5 P2 0.04 0.00 0.21 0.00 0.00 0.00
T6 P2 0.00 0.04 0.00 0.00 0.00 0.34
T1 P3 0.20 0.00 0.00 0.04 0.00 0.04
T2 P3 0.00 0.22 0.04 0.00 0.00 0.00
T3 P3 0.04 0.00 0.00 0.24 0.00 0.00
T4 P3 0.00 0.00 0.04 0.00 0.33 0.00
T5 P3 0.04 0.00 0.21 0.00 0.00 0.00
T6 P3 0.00 0.04 0.00 0.00 0.00 0.34
...
...
Upvotes: 2
Views: 532
Reputation: 27388
Here's how you might do it with ggplot2
or lattice
. These packages work with "long format" data. For your dataset, this means having the values of columns 3 through 8 stacked into a single column, with a second column indicating the name of the group (i.e. the original columns' names, e.g. C10
, C14
, etc.).
tidyr
is convenient for reshaping to long format:
d <- read.table(text='Topic Project C10 C14 C03 C11 C16 C08
T1 P1 0.24 0.00 0.00 0.04 0.04 0.00
T2 P1 0.00 0.30 0.00 0.00 0.00 0.00
T3 P1 0.04 0.04 0.00 0.24 0.00 0.00
T4 P1 0.00 0.00 0.00 0.04 0.33 0.04
T5 P1 0.00 0.09 0.21 0.00 0.00 0.00
T6 P1 0.00 0.09 0.00 0.00 0.00 0.34
T1 P2 0.20 0.00 0.00 0.04 0.00 0.04
T2 P2 0.00 0.22 0.04 0.00 0.00 0.00
T3 P2 0.04 0.00 0.00 0.24 0.00 0.00
T4 P2 0.00 0.00 0.04 0.00 0.33 0.00
T5 P2 0.04 0.00 0.21 0.00 0.00 0.00
T6 P2 0.00 0.04 0.00 0.00 0.00 0.34
T1 P3 0.20 0.00 0.00 0.04 0.00 0.04
T2 P3 0.00 0.22 0.04 0.00 0.00 0.00
T3 P3 0.04 0.00 0.00 0.24 0.00 0.00
T4 P3 0.00 0.00 0.04 0.00 0.33 0.00
T5 P3 0.04 0.00 0.21 0.00 0.00 0.00
T6 P3 0.00 0.04 0.00 0.00 0.00 0.34', header=TRUE)
library(tidyr)
d2 <- gather(d, Variable, Value, -Topic, -Project)
head(d2)
## Topic Project Variable Value
## 1 T1 P1 C10 0.24
## 2 T2 P1 C10 0.00
## 3 T3 P1 C10 0.04
## 4 T4 P1 C10 0.00
## 5 T5 P1 C10 0.00
## 6 T6 P1 C10 0.00
Then, with ggplot2
:
library(ggplot2)
ggplot(d2, aes(x=Topic, y=Value, fill=Variable)) +
geom_bar(stat='identity', position='dodge') +
facet_wrap(~Project)
Or with lattice
:
library(lattice)
barchart(Value~Topic|Project, d2, groups=Variable, origin=0)
Both of the above are highly customisable. See the ggplot2
docs, and ?lattice::barchart
.
Upvotes: 1