Reputation: 2146
Given the following sample data:
library(Metrics)
obs=data.frame(replicate(10,runif(100)))
pred=data.frame(replicate(10,runif(100)))
obs1=as.data.frame(lapply(obs, function(cc) cc[ sample(c(TRUE, NA), prob = c(0.85, 0.15), size = length(cc), replace = TRUE) ]))
pred1=as.data.frame(lapply(pred, function(cc) cc[ sample(c(TRUE, NA), prob = c(0.85, 0.15), size = length(cc), replace = TRUE) ]))
pred1[,1]=NA
result=mapply(function(x, y) {if(all(is.na(y))) NA else mae(x, y, ), mse(x,y),rmse(x,y),se(x,y)
}, obs1,pred1,SIMPLIFY = F,USE.NAMES = TRUE)
I want to calculate say mae(obs1[,1],pred1[,1])
etc via mapply
. How can I do the same for all other functions via a single call using base R functions
or plyr
?
In the output, the rownames of result
are the column names
of either obs1
or pred1
while the colnames are mae, mse,rmse,se
etc.
Upvotes: 3
Views: 194
Reputation: 4995
You have to write your own function to specify the various functions you'd like to apply:
multi.fun <- function(x,y) {
c(mae = mae(x,y), mse = mse(x,y))
}
Then you can do:
obs=data.frame(replicate(10,runif(100)))
pred=data.frame(replicate(10,runif(100)))
obs1=as.data.frame(lapply(obs, function(cc) cc[ sample(c(TRUE, NA), prob = c(0.85, 0.15), size = length(cc), replace = TRUE) ]))
pred1=as.data.frame(lapply(pred, function(cc) cc[ sample(c(TRUE, NA), prob = c(0.85, 0.15), size = length(cc), replace = TRUE) ]))
mapply(multi.fun, obs1, pred1)
Upvotes: 1