Reputation: 255
For this Kata, i am given random function names in the PEP8 format and i am to convert them to camelCase.
(input)get_speed == (output)getSpeed .... (input)set_distance == (output)setDistance
I have a understanding on one way of doing this written in pseudo-code:
loop through the word,
if the letter is an underscore
then delete the underscore
then get the next letter and change to a uppercase
endIf
endLoop
return the resultant word
But im unsure the best way of doing this, would it be more efficient to create a char array and loop through the element and then when it comes to finding an underscore delete that element and get the next index and change to uppercase.
Or would it be better to use recursion:
function camelCase takes a string
if the length of the string is 0,
then return the string
endIf
if the character is a underscore
then change to nothing,
then find next character and change to uppercase
return the string taking away the character
endIf
finally return the function taking the first character away
Any thoughts please, looking for a good efficient way of handing this problem. Thanks :)
Upvotes: 0
Views: 402
Reputation: 2307
I would go with this:
divide given String by underscore to array
from second word until end take first letter and convert it to uppercase
join to one word
This will work in O(n) (go through all names 3 time). For first case, use this function:
str.split("_");
for uppercase use this:
String newName = substring(0, 1).toUpperCase() + stre.substring(1);
But make sure you check size of the string first...
Edited - added implementation
It would look like this:
public String camelCase(String str) {
if (str == null ||str.trim().length() == 0) return str;
String[] split = str.split("_");
String newStr = split[0];
for (int i = 1; i < split.length; i++) {
newStr += split[i].substring(0, 1).toUpperCase() + split[i].substring(1);
}
return newStr;
}
for inputs:
"test"
"test_me"
"test_me_twice"
it returns:
"test"
"testMe"
"testMeTwice"
Upvotes: 1
Reputation: 1370
It would be simpler to iterate over the string instead of recursing.
String pep8 = "do_it_again";
StringBuilder camelCase = new StringBuilder();
for(int i = 0, l = pep8.length(); i < l; ++i) {
if(pep8.charAt(i) == '_' && (i + 1) < l) {
camelCase.append(Character.toUpperCase(pep8.charAt(++i)));
} else {
camelCase.append(pep8.charAt(i));
}
}
System.out.println(camelCase.toString()); // prints doItAgain
Upvotes: 1
Reputation: 11132
The question you pose is whether to use an iterative or a recursive approach. For this case I'd go for the recursive approach because it's straightforward, easy to understand doesn't require much resources (only one array, no new stackframe etc), though that doesn't really matter for this example.
Recursion is good for divide-and-conquer problems, but I don't see that fitting the case well, although it's possible.
An iterative implementation of the algorithm you described could look like the following:
StringBuilder buf = new StringBuilder(input);
for(int i = 0; i < buf.length(); i++){
if(buf.charAt(i) == '_'){
buf.deleteCharAt(i);
if(i != buf.length()){ //check fo EOL
buf.setCharAt(i, Character.toUpperCase(buf.charAt(i)));
}
}
}
return buf.toString();
The check for the EOL is not part of the given algorithm and could be ommitted, if the input string never ends with '_'
Upvotes: 0