Reputation: 2251
I have a pandas Series where each cells is a dictionary :
data.individus.head(5)
Out[25]:
0 [{'dateDeNaissance': 1954-09-14 00:00:00, 'enc...
1 [{'dateDeNaissance': 1984-09-14 00:00:00, 'enc...
2 [{'enceinte': False, 'dateDeNaissance': 1981-0...
3 [{'dateDeNaissance': 1989-09-14 00:00:00, 'enc...
4 [{'enceinte': False, 'dateDeNaissance': 1989-0...
Name: individus, dtype: object
I would like to construct a pandas Dataframe using each dictionnary, like so :
t_individus.ix[:, ['dateDeNaissance', 'enceinte']].head()
Out[14]:
dateDeNaissance enceinte
0 1954-09-14 00:00:00 False
1 1984-09-14 00:00:00 False
2 1981-09-14 00:00:00 False
3 1989-09-14 00:00:00 False
4 1989-09-14 00:00:00 False
Note that I have many more keys (~50) but i'm showing 2 for the example.
I tried 2 different ways but I'm not entirely satisfied with the processing speed :
1/ Concatening
serie = data.foo # 110199 lines
keys = get_all_possible_keys(serie) # 48 keys (process time: 0.8s)
table = pd.DataFrame(columns=list(keys))
for i in serie:
df = pd.DataFrame(list(i.items()))
df = df.transpose()
df.columns = df.iloc[0]
df = df.reindex(df.index.drop(0))
table = pd.concat([table, df], axis=0)
It starts fast and then slowly decrease while table
gets bigger. Overall process takes around 1 hours.
2/ Pre-allocate memory and filling row by row
serie = data.foo
keys = get_all_possible_keys(serie)
len_serie = len(serie)
# -- Pre-allocate memory by declaring size
table = pd.DataFrame(np.nan,
index=range(0, len_serie),
columns=list(keys))
# -- Fill row by row
k = 0
for i in serie:
table.loc[k] = pd.Series(i[0])
k += 1
Processing time depends on table
's size. It's much faster with a subset (~10k lines) and gets incredibly slower with the full dataset (110k lines).
2 Questions :
table
is big (much slower than method 1) while its only filling empty rows ?Upvotes: 0
Views: 452
Reputation: 210942
It's almost the same idea as @James's, but in your case you have a series of lists of dicts, which you want to convert to list of dicts or to series of dicts first:
In [12]: s
Out[12]:
0 [{'a': 'aaa', 'b': 'bbb', 'c': 'ccc'}]
1 [{'a': 'a1', 'b': 'b1', 'c': 'c1'}]
dtype: object
In [13]: pd.DataFrame(s.sum())
Out[13]:
a b c
0 aaa bbb ccc
1 a1 b1 c1
In [14]: s.sum()
Out[14]: [{'a': 'aaa', 'b': 'bbb', 'c': 'ccc'}, {'a': 'a1', 'b': 'b1', 'c': 'c1'}]
using .tolist()
:
In [15]: pd.DataFrame(s.tolist())
Out[15]:
0
0 {'a': 'aaa', 'b': 'bbb', 'c': 'ccc'}
1 {'a': 'a1', 'b': 'b1', 'c': 'c1'}
Upvotes: 2
Reputation: 2507
I have found in the past that it is surprisingly quick to build a dataframe from a list of dicts. My simple suggestion would be to try,
dataframe = pandas.DataFrame(data.foo.tolist())
Upvotes: 3