Reputation: 2280
Lets say I have this data
a = pandas.Series([1,2,3,4,5,6,7,8])
a
Out[313]:
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
dtype: int64
I would like aggregate data which groups data n
rows at a time and sums them up. So if n=2
the new series would look like {3,7,11,15}
.
Upvotes: 0
Views: 116
Reputation: 2991
you can use pandas rolling mean and get it like the following:
if n
is your interval:
sums = list(a.rolling(n).sum()[n-1::n])
# Optional !!!
rem = len(a)%n
if rem != 0:
sums.append(a[-rem:].sum())
The first line perfectly adds the rows if the data can be properly divided into groups, else, we also can add the remaining sum (depends on your preference).
For e.g., in the above case, if n=3
, then you may want to get either {6, 15, 15}
or just {6, 15}
. The code above is for the former case. And skipping the optional part gives you just {6, 15}
.
Upvotes: 0
Reputation: 210832
try this:
In [39]: a.groupby(a.index//2).sum()
Out[39]:
0 3
1 7
2 11
3 15
dtype: int64
In [41]: a.index//2
Out[41]: Int64Index([0, 0, 1, 1, 2, 2, 3, 3], dtype='int64')
n=3
In [42]: n=3
In [43]: a.groupby(a.index//n).sum()
Out[43]:
0 6
1 15
2 15
dtype: int64
In [44]: a.index//n
Out[44]: Int64Index([0, 0, 0, 1, 1, 1, 2, 2], dtype='int64')
Upvotes: 1