Reputation:
I have 19 input integer features. Output and labels is 1 or 0. I examine MNIST example from tensorflow website.
My code is here :
validation_images, validation_labels, train_images, train_labels = ld.read_data_set()
print "\n"
print len(train_images[0])
print len(train_labels)
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, shape=[None, 19])
y_ = tf.placeholder(tf.float32, shape=[None, 2])
W = tf.Variable(tf.zeros([19,2]))
b = tf.Variable(tf.zeros([2]))
sess.run(tf.initialize_all_variables())
y = tf.nn.softmax(tf.matmul(x,W) + b)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
start = 0
batch_1 = 50
end = 100
for i in range(1000):
#batch = mnist.train.next_batch(50)
x1 = train_images[start:end]
y1 = train_labels[start:end]
start = start + batch_1
end = end + batch_1
x1 = np.reshape(x1, (-1, 19))
y1 = np.reshape(y1, (-1, 2))
train_step.run(feed_dict={x: x1[0], y_: y1[0]})
I run upper code, I get an error. The compiler says that
% (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (19,) for Tensor u'Placeholder:0', which has shape '(?, 19)'
How can I handle this error?
Upvotes: 1
Views: 5686
Reputation: 703
You can reshape your feed's value by the following code:
x1 = np.column_stack((x1))
x1 = np.transpose(x1) # if necessary
Thus, the shape of the input value will be (1, 19) instead of (19,)
Upvotes: 0