Reputation: 1130
I want to be able to create a generic nested template such that I can find the total size of all classes. To start, imagine for classes A, B, C, etc... each of which have a mSize
member, and GetSize()
function. I do the following process:
int main()
{
using Abc = A<B<C<>>>; // Imagine it is defined similarly to this for now.
Abc abc;
std::cout << abc.GetSize() << std::endl;
// For abc.GetSize(), this will do the following:
// 1. Go into A::GetSize().
// 2. This will return A::mSize + B::GetSize()
// 3. This will go into B::GetSize()
// 4. This will return B::mSize + C::GetSize()
// 5. Etc
// Overall, we will have the total size of A+B+C as
// A::mSize + B::mSize + C::mSize.
return 0;
}
It will recursively go through each template class until the end and call GetSize(). My current attempts to do so have been using template-templates and variadic templates.
template <template<typename> class First, template<typename> class ...Args>
class A
{
public:
int GetSize() const
{
First<Args...> foo;
return mSize + foo.GetSize();
}
private:
int mSize{1};
};
template <template<typename> class First, template<typename> class ...Args>
class B
{
public:
int GetSize() const
{
First<Args...> foo;
return mSize + foo.GetSize();
}
private:
int mSize{2};
};
template <template<typename> class First, template<typename> class ...Args>
class C
{
public:
int GetSize() const
{
First<Args...> foo;
return mSize + foo.GetSize();
}
private:
int mSize{3};
};
This obviously has not worked. I would really like to be able to achieve the process described in int main()
.
Notes:
These classes don't necessarily have to be included, or be in order. We could have A<C>
or B<E<C<F<>>>>
. Ideally, it can be infinitely long.
I don't want to use polymorphism, wanting it to be resolved at runtime. I could have them all inherit from the same class, create a std::vector<Parent*>
, push_back each child class, and iterate through using GetSize(). It would be nice to be able to define unique types such as A<B<>>
, A<B<C<>>>
, etc.
Upvotes: 2
Views: 563
Reputation: 37606
Since your mSize
is the same for all instance, your method should be static
, and since it looks like it is a constant, it should be a constexpr
.
Here is an implementation that uses a general template and then partially instantiate it with specific sizes:
template <int Size, typename T>
struct Holder {
static constexpr int GetSize() {
return Size + T::GetSize();
}
};
template <int Size>
struct Holder<Size, void> {
static constexpr int GetSize() {
return Size;
}
};
template <typename T = void>
using A = Holder<1, T>;
template <typename T = void>
using B = Holder<2, T>;
template <typename T = void>
using C = Holder<3, T>;
Then you can test:
using AB = A<B<>>;
using ABC = A<B<C<>>>;
static_assert(AB::GetSize() == 1 + 2, "Oops!");
static_assert(ABC::GetSize() == 1 + 2 + 3, "Oops!");
Of course you can make A
, B
, C
, ... extends Holder
instead of partially instantiate it if you need it.
Upvotes: 4
Reputation: 13988
You could do something like:
#include <iostream>
#include <type_traits>
using namespace std;
template <class T>
struct A {
static constexpr int size = 1;
using inner_type = T;
};
template <class T>
struct B {
static constexpr int size = 2;
using inner_type = T;
};
//template <class T>
struct C {
static constexpr int size = 3;
using inner_type = void;
};
template <class T, class = void>
struct TotalSizeGetter {
static constexpr int get() {
return T::size + TotalSizeGetter<typename T::inner_type>::get();
}
};
template <class T>
struct TotalSizeGetter<T, typename enable_if<is_void<typename T::inner_type>::value>::type> {
static constexpr int get() {
return T::size;
}
};
int main() {
cout << TotalSizeGetter<A<B<C>>>::get() << endl;
}
This uses c++11 constexpr
and enable_if
but I see this is not a limitation as you use term variadic templates in your question...
Upvotes: 3