Reputation: 1256
Given a Pandas Series of type str, I want to get the frequencies of the result returned by str.split.
For example, given the Series
s = pd.Series(['abc,def,ghi','ghi,abc'])
I would like to get
abc: 2
def: 1
ghi: 2
as a result. How can I get this?
Edit: The solution should efficiently work with a large Series of 50 million rows.
Upvotes: 2
Views: 897
Reputation: 862641
Another pandas solution with str.split
, sum
and value_counts
:
print pd.Series(s.str.split(',').sum()).value_counts()
abc 2
ghi 2
def 1
dtype: int64
EDIT:
More efficent methods:
import pandas as pd
s = pd.Series(['abc,def,ghi','ghi,abc'])
s = pd.concat([s]*10000).reset_index(drop=True)
In [17]: %timeit pd.Series(s.str.split(',').sum()).value_counts()
1 loops, best of 3: 3.1 s per loop
In [18]: %timeit s.str.split(',', expand=True).stack().value_counts()
10 loops, best of 3: 46.2 ms per loop
In [19]: %timeit pd.DataFrame([ x.split(',') for x in s.tolist() ]).stack().value_counts()
10 loops, best of 3: 22.2 ms per loop
In [20]: %timeit pd.Series([item for sublist in [ x.split(',') for x in s.tolist() ] for item in sublist]).value_counts()
100 loops, best of 3: 16.6 ms per loop
Upvotes: 3
Reputation: 210842
is that what you want?
In [29]: from collections import Counter
In [30]: Counter(s.str.split(',').sum())
Out[30]: Counter({'abc': 2, 'def': 1, 'ghi': 2})
or
In [34]: a = pd.Series(s.str.split(',').sum())
In [35]: a
Out[35]:
0 abc
1 def
2 ghi
3 ghi
4 abc
dtype: object
In [36]: a.groupby(a).size()
Out[36]:
abc 2
def 1
ghi 2
dtype: int64
Upvotes: 2