Reputation: 37
I'm using the OpenCV library for Python to detect the circles in an image. As a test case, I'm using the following image:
bottom of can:
I've written the following code, which should display the image before detection, then display the image with the detected circles added:
import cv2
import numpy as np
image = cv2.imread('can.png')
image_rgb = image.copy()
image_copy = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
grayscaled_image = cv2.cvtColor(image_copy, cv2.COLOR_GRAY2BGR)
cv2.imshow("confirm", grayscaled_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
circles = cv2.HoughCircles(image_copy, cv2.HOUGH_GRADIENT, 1.3, 20, param1=60, param2=33, minRadius=10,maxRadius=28)
if circles is not None:
print("FOUND CIRCLES")
circles = np.round(circles[0, :]).astype("int")
print(circles)
for (x, y, r) in circles:
cv2.circle(image, (x, y), r, (255, 0, 0), 4)
cv2.rectangle(image, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1)
cv2.imshow("Test", image + image_rgb)
cv2.waitKey(0)
cv2.destroyAllWindows()
I get this:resultant image
I feel that my problem lies in the usage of the HoughCircles()
function. It's usage is:
cv2.HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]])
where minDist
is a value greater than 0 that requires detected circles to be a certain distance from one another. With this requirement, it would be impossible for me to properly detect all of the circles on the bottom of the can, as the center of each circle is in the same place. Would contours be a solution? How can I convert contours to circles so that I may use the coordinates of their center points? What should I do to best detect the circle objects for each ring in the bottom of the can?
Upvotes: 3
Views: 2366
Reputation: 25
Not all but a majority of the circles can be detected by adaptive thresholding the image, finding the contours and then fitting a minimum enclosing circle for contours having area greater than a threshold
import cv2
import numpy as np
block_size,constant_c ,min_cnt_area = 9,1,400
img = cv2.imread('viMmP.png')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(img_gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV,block_size,constant_c)
thresh_copy = thresh.copy()
contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
if cv2.contourArea(cnt)>min_cnt_area:
(x,y),radius = cv2.minEnclosingCircle(cnt)
center = (int(x),int(y))
radius = int(radius)
cv2.circle(img,center,radius,(255,0,0),1)
cv2.imshow("Thresholded Image",thresh_copy)
cv2.imshow("Image with circles",img)
cv2.waitKey(0)
Now this script yields the result:
But there are certain trade-offs like, if the block_size
and constant_c
are changed to 11 and 2 respectively then the script yields:
You should try applying erosion with a kernel of proper shape to separate the overlapping circles in the thresholded image
You may look at the following links to understand more about adaptive thresholding and contours:
Threshlding examples: http://docs.opencv.org/3.1.0/d7/d4d/tutorial_py_thresholding.html
Thresholding reference: http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html
Contour Examples: http://docs.opencv.org/3.1.0/dd/d49/tutorial_py_contour_features.html
Upvotes: 1