Reputation: 2476
I have some columns ['a', 'b', 'c', etc.]
(a
and c
are float64
while b
is object
)
I would like to convert all columns to string and preserve nan
s.
Tried using df[['a', 'b', 'c']] == df[['a', 'b', 'c']].astype(str)
but that left blanks for the float64
columns.
Currently I am going through one by one with the following:
df['a'] = df['a'].apply(str)
df['a'] = df['a'].replace('nan', np.nan)
Is the best way to use .astype(str)
and then replace ''
with np.nan
? Side question: is there a difference between .astype(str)
and .apply(str)
?
Sample Input: (dtypes: a=float64, b=object, c=float64)
a, b, c, etc.
23, 'a42', 142, etc.
51, '3', 12, etc.
NaN, NaN, NaN, etc.
24, 'a1', NaN, etc.
Desired output: (dtypes: a=object, b=object, c=object)
a, b, c, etc.
'23', 'a42', '142', etc.
'51', 'a3', '12', etc.
NaN, NaN, NaN, etc.
'24', 'a1', NaN, etc.
Upvotes: 3
Views: 17787
Reputation: 623
This gives you the list of column names
lst = list(df)
This converts all the columns to string type
df[lst] = df[lst].astype(str)
Upvotes: 7
Reputation: 11568
You could apply .astype()
function on every elements of dataframe, or could select the column of interest to convert to string by following ways too.
In [41]: df1 = pd.DataFrame({
...: 'a': [23.0, 51.0, np.nan, 24.0],
...: 'b': ["a42", "3", np.nan, "a1"],
...: 'c': [142.0, 12.0, np.nan, np.nan]})
...:
In [42]:
In [42]: df1
Out[42]:
a b c
0 23.0 a42 142.0
1 51.0 3 12.0
2 NaN NaN NaN
3 24.0 a1 NaN
### Shows current data type of the columns:
In [43]: df1.dtypes
Out[43]:
a float64
b object
c float64
dtype: object
### Applying .astype() on each element of the dataframe converts the datatype to string
In [45]: df1.astype(str).dtypes
Out[45]:
a object
b object
c object
dtype: object
### Or, you could select the column of interest to convert it to strings
In [48]: df1[["a", "b", "c"]] = df1[["a","b", "c"]].astype(str)
In [49]: df1.dtypes ### Datatype update
Out[49]:
a object
b object
c object
dtype: object
Upvotes: 3
Reputation: 31
I did this way.
get all your value from a specific column, e.g. 'text'.
k = df['text'].values
then, run each value into a new declared string, e.g. 'thestring'
thestring = ""
for i in range(0,len(k)):
thestring += k[i]
print(thestring)
hence, all string in column pandas 'text' has been put into one string variable.
cheers, fairuz
Upvotes: 0
Reputation: 109546
df = pd.DataFrame({
'a': [23.0, 51.0, np.nan, 24.0],
'b': ["a42", "3", np.nan, "a1"],
'c': [142.0, 12.0, np.nan, np.nan]})
for col in df:
df[col] = [np.nan if (not isinstance(val, str) and np.isnan(val)) else
(val if isinstance(val, str) else str(int(val)))
for val in df[col].tolist()]
>>> df
a b c
0 23 a42 142
1 51 3 12
2 NaN NaN NaN
3 24 a1 NaN
>>> df.values
array([['23', 'a42', '142'],
['51', '3', '12'],
[nan, nan, nan],
['24', 'a1', nan]], dtype=object)
Upvotes: 4