LearningSlowly
LearningSlowly

Reputation: 9431

Adding Column Headers to new pandas dataframe

I am creating a new pandas dataframe from a previous dataframe using the .groupby and .size methods.

[in] results = df.groupby(["X", "Y", "Z", "F"]).size()

[out]
    9   27/02/2016  1   N   326
    9   27/02/2016  1   S   332
    9   27/02/2016  2   N   280
    9   27/02/2016  2   S   353
    9   27/02/2016  3   N   177

This behaves as expected, however the result is a dataframe with no column headers.

This SO question states that the following adds column names to the generated dataframe

[in] results.columns = ["X","Y","Z","F","Count"]

However, this does not seem to have any impact at all.

[out]
        9   27/02/2016  1   N   326
        9   27/02/2016  1   S   332
        9   27/02/2016  2   N   280
        9   27/02/2016  2   S   353
        9   27/02/2016  3   N   177

Upvotes: 4

Views: 2756

Answers (2)

EdChum
EdChum

Reputation: 394041

What you're seeing are your grouped columns as the index, if you call reset_index then it restores the column names

so

results = df.groupby(["X", "Y", "Z", "F"]).size()
results.reset_index()

should work

In [11]:
df.groupby(["X","Y","Z","F"]).size()

Out[11]:
X  Y           Z  F
9  27/02/2016  1  N    1
                  S    1
               2  N    1
                  S    1
               3  N    1
dtype: int64

In [12]:    
df.groupby(["X","Y","Z","F"]).size().reset_index()

Out[12]:
   X           Y  Z  F  0
0  9  27/02/2016  1  N  1
1  9  27/02/2016  1  S  1
2  9  27/02/2016  2  N  1
3  9  27/02/2016  2  S  1
4  9  27/02/2016  3  N  1

Additionally you can achieve what you want by using count:

In [13]:
df.groupby(["X","Y","Z","F"]).count().reset_index()

Out[13]:
   X           Y  Z  F  Count
0  9  27/02/2016  1  N      1
1  9  27/02/2016  1  S      1
2  9  27/02/2016  2  N      1
3  9  27/02/2016  2  S      1
4  9  27/02/2016  3  N      1

You could also pass param as_index=False here:

In [15]:
df.groupby(["X","Y","Z","F"], as_index=False).count()

Out[15]:
   X           Y  Z  F  Count
0  9  27/02/2016  1  N      1
1  9  27/02/2016  1  S      1
2  9  27/02/2016  2  N      1
3  9  27/02/2016  2  S      1
4  9  27/02/2016  3  N      1

This is normally fine but some aggregate functions will bork if you try to use aggregation methods on columns whose dtypes cannot be aggregated, for instance if you have str dtypes and you decide to call mean for instance.

Upvotes: 6

MaxU - stand with Ukraine
MaxU - stand with Ukraine

Reputation: 210842

you can use as_index=False parameter for the .groupby() function:

results = df.groupby(["X", "Y", "Z", "F"], as_index=False).size().rename(columns={0:'Count'})

Upvotes: 2

Related Questions