Reputation: 12515
To generate a random int
between 0 and 10 in Python, I could do any of the following:
import numpy as np
print(np.random.randint(0, 10))
or
import random
print(random.randint(0, 10))
How do these two methods differ, computationally?
Upvotes: 3
Views: 82
Reputation: 11177
It's important to note that these function are not equivalent. In numpy, the range is [low, high)
, and in the Python random [low, high]
.
Speed
It seems that the numpy implementation is the fastest:
In [1]: import numpy as np
In [2]: %timeit np.random.randint(0, 10)
1000000 loops, best of 3: 206 ns per loop
In [3]: import random
In [4]: %timeit random.randint(0, 10)
1000000 loops, best of 3: 1.5 µs per loop
Randomness
The randomness seems to be the same. One can test the randomness using ent
For this script
import numpy as np
import sys
for _ in range(1000000):
sys.stdout.write(str(np.random.randint(0, 10)))
the partial output of the command python file.py | ent -c
is
Value Char Occurrences Fraction
48 0 100360 0.100360
49 1 100157 0.100157
50 2 99958 0.099958
51 3 100359 0.100359
52 4 100287 0.100287
53 5 100022 0.100022
54 6 99909 0.099909
55 7 99143 0.099143
56 8 100119 0.100119
57 9 99686 0.099686
Total: 1000000 1.000000
Entropy = 3.321919 bits per byte.
And for this script
import random
import sys
for _ in range(1000000):
sys.stdout.write(str(random.randint(0, 9)))
the partial output of the command python file.py | ent -c
is
Value Char Occurrences Fraction
48 0 100372 0.100372
49 1 100491 0.100491
50 2 98988 0.098988
51 3 100557 0.100557
52 4 100227 0.100227
53 5 100004 0.100004
54 6 99520 0.099520
55 7 100148 0.100148
56 8 99736 0.099736
57 9 99957 0.099957
Total: 1000000 1.000000
Entropy = 3.321913 bits per byte.
Upvotes: 4