Reputation: 186
I'm trying to create a node class that contains a vector of pointers. Here's my code:
node.h:
#ifndef NODE_H
#define NODE_H
class node
{
public:
vector<node*> next;
void add_arc(node & a)
string some_string;
#endif
node.cpp:
void node::add_arc(node & a)
{
node *b = &a;
next.push_back(b); //only copyies nodes
}
main.cpp:
int main()
{
vector<node> nodes;
node a;
node b;
node c;
a.somestring = "a";
b.somestring = "b";
c.somestring = "c";
a.add_arc(b); //a should point to b
a.add_arc(c); //a should point to c
nodes.push_back(a);
nodes.push_back(b);
nodes.push_back(c);
cout << nodes[0].next.size() << endl; // prints "2", works fine
cout << nodes[0].next[0]->some_string << endl; //empty
}
I thought it would be as easy as just overloading push_back:
void push_back(vertex * pointer)
{
next.push_back(pointer);
}
But I think I really need a copy constructor, or some other method to make this work. How would I go about doing this for a vector of pointers?
Edit: I guess I didn't explain it well. Look at the answers in this question: Segmentation fault when accessing a pointer's member function in a vector Making 'a' a reference did not work for me
Upvotes: 0
Views: 2330
Reputation: 73366
Your code generates as expected the correct output (see online demo):
2
b
However this result is related somehow to luck, because in your code snippet:
nodes
vector are copies of the original object including all their pointersHowever in more complex code, you'd quickly end up with dangling pointers. Imagine:
next
pointers invalidated. main
. In this case, as soon as you return from this function, all the local nodes get destroyed and the vector's node will point to objects that do no longer exist. UB guaranteed ! Your design fails to recognize that the nodes all belong to the same graph.
There is a quick and dirty way out: always create the node from the free store, and store them in a vector<node*>
.
vector<node*> nodes;
node *a = new node("a"); // Imagine a node constructor
node *b = new node("b");
a->add_arc(b); //change signature, to accept a pointer
nodes.push_back(a);
nodes.push_back(b);
There's a better approach: improve further the previous approach, but use shared_ptr<node*>
to make sure that nodes that are no longer referenced (neither by a vector of nodes, nor by an arc) are destroyed automatically.
There's an even better approach: encapsulate the nodes in a class representing a graph. In this case, you could consider using a vector<nodes>
and replace the pointers in next
, by indexes of the target nodes in the vector. No pointer, but perfect copy of graphs will be much easier. And no more memory management hassle.
class node // just to give the general idea
{
public:
vector<int> next; // not usable without the graph
void add_arc(int a)
string id;
};
class graph {
vector<node> nodes;
public:
void add_node (node a);
void add_arc (string from, string to);
node& operator[] (size_t i);
...
};
Upvotes: 1