Reputation: 507
Lets say I have an image called Test.jpg.
I just figured out how to bring an image into the project by the following line:
FILE *infile = fopen("Stonehenge.jpg", "rb");
Now that I have the file, do I need to convert this file into a bmp image in order to apply a filter to it?
I have never worked with images before, let alone OpenCl so there is a lot that is going over my head.
I need further clarification on this part for my own understanding
Does this bmp image also need to be stored in an array in order to have a filter applied to it? I have seen a sliding window technique be used a couple of times in other examples. Is the bmp image pretty much split up into RGB values (0-255)? If someone can provide a link on this item that should help me understand this a lot better.
I know this may seem like a basic question to most but I do not have a mentor on this subject in my workplace.
Upvotes: 0
Views: 911
Reputation: 162164
Now that I have the file, do I need to convert this file into a bmp image in order to apply a filter to it?
Not exactly. bmp
is a very specific image serialization format and actually a quite complicated one (implementing a BMP file parser that deals with all the corner cases correctly is actually rather difficult).
However what you have there so far is not even file content data. What you have there is a C stdio FILE
handle and that's it. So far you did not even check if the file could be opened. That's not really useful.
JPEG is a lossy compressed image format. What you need to be able to "work" with it is a pixel value array. Either an array of component tuples, or a number of arrays, one for each component (depending on your application either format may perform better).
Now implementing image format decoders becomes tedious. It's not exactly difficult but also not something you can write down on a single evening. Of course the devil is in the details and writing an implementation that is high quality, covers all corner cases and is fast is a major effort. That's why for every image (and video and audio) format out there you usually can find only a small number of encoder and decoder implementations. The de-facto standard codec library for JPEG are libjpeg and libjpeg-turbo. If your aim is to read just JPEG files, then these libraries would be the go-to implementation. However you also may want to support PNG files, and then maybe EXR and so on and then things become tedious again. So there are meta-libraries which wrap all those format specific libraries and offer them through a universal API.
In the OpenGL wiki there's a dedicated page on the current state of image loader libraries: https://www.opengl.org/wiki/Image_Libraries
Does this bmp image also need to be stored in an array in order to have a filter applied to it?
That actually depends on the kind of filter you want to apply. A simple threshold filter for example does not take a pixel's surroundings into account. If you were to perform scanline signal processing (e.g. when processing old analogue television signals) you may require only a single row of pixels at a time.
The universal solution of course to keep the whole image in memory, but then some pictures are so HUGE that no average computer's RAM can hold them. There are image processing libraries like VIPS that implement processing graphs that can operate on small subregions of an image at a time and can be executed independently.
Is the bmp image pretty much split up into RGB values (0-255)? If someone can provide a link on this item that should help me understand this a lot better.
In case you mean "pixel array" instead of BMP (remember, BMP is a specific data structure), then no. Pixel component values may be of any scalar type and value range. And there are in fact colour spaces in which there are value regions which are mathematically necessary but do not denote actually sensible colours.
When it comes down to pixel data, an image is just a n-dimensional array of scalar component tuples where each component's value lies in a given range of values. It doesn't get more specific for that. Only when you introduce colour spaces (RGB, CMYK, YUV, CIE-Lab, CIE-XYZ, etc.) you give those values specific colour-meaning. And the choice of data type is more or less arbitrary. You can either use 8 bits per component RGB (0..255), 10 bits (0..1024) or floating point (0.0 .. 1.0); the choice is yours.
Upvotes: 3