Reputation: 75
An array consists of 1
, 2
, and 0
s. I am trying to identify the maximum repetition and its starting index within the array.
Example:
2 2 1 0 2 2 2 0 1 1
The method should accept an integer arguement, which can be one of the numbers 1
or 2
If we demonstrate these inputs on above array, the outputs would be:
find_duplicates(2)
=> 3,4
find_duplicates(1)
=> 2,8
where the first number indicates the size of the duplication, and second is the starting index of it.
I tried looping through the array and compare with arr[i+1]
or arr[-1]
, but this is not the correct approach. Any help will be greatly appreciated.
Edit: I had not pasted what I had tried at the time I asked the question, this is not something I would do if I could feel some confidence on the way I followed:
def find_status(arr,participant)
status = Array.new
#arr is a two dimensional array
for i in 0...arr.length do
current_line=arr[i]
cons=0
for j in 0...current_line.length do
#I worked on lots of if/else/case statements here, this is just one of them
if current_line[j] == participant
cons+=1 #count consecutive
if current_line[j]!=participant
cons=0
end
end
status[i] = cons
end
end
return status
end
Upvotes: 0
Views: 310
Reputation: 121000
The solution below is likely most efficient since it is O(N)
. It walks through an array, collecting the chunks:
arr.each.with_index.reduce({idx:-1, i: -1, len: 0}) do |memo, (e, i)|
memo[:i] = i if memo[:i] == -1 && e == 2 # at the beginning of chunk
memo[:len], memo[:idx] = [i - memo[:i], memo[:i]] \
if memo[:i] >= 0 && i - memo[:i] > memo[:len] # save values if needed
memo[:i] = -1 unless e == 2 # reset index counter
memo
end.reject { |k, _| k == :i } # reject temporary index value
#⇒ {
# :idx => 4,
# :len => 3
# }
To use it as method, accepting a parameter; just wrap the code above with def find_duplicates number
and substitute 2
with number in the code above. Yes, it returns hash instead of an array.
Upvotes: 1
Reputation: 110675
def max_run(arr, target)
_,b = arr.each_with_index.
chunk { |n,_| n==target }.
select { |tf,_| tf==true }.
max_by { |_,a| a.size }
b ? [b.size, b.first.last] : nil
end
arr = [1,1,2,2,2,3,1,1,1,1,2,2,2,2,3,3]
max_run(arr,1) #=> [4, 6]
max_run(arr,2) #=> [4, 10]
max_run(arr,3) #=> [2, 14]
max_run(arr,4) #=> nil
For target = 2
, the steps are as follows:
enum0 = arr.each_with_index
#=> #<Enumerator: [1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3]
# :each_with_index>
We can see the elements that will be generated by this enumerator by converting it to an array:
enum0.to_a
#=> [[1, 0], [1, 1], [2, 2], [2, 3], [2, 4], [3, 5], [1, 6], [1, 7], [1, 8],
# [1, 9], [2, 10], [2, 11], [2, 12], [2, 13], [3, 14], [3, 15]]
Continuing,
enum1 = enum0.chunk { |n,_| n==target }
#=> #<Enumerator: #<Enumerator::Generator:0x007f9beb9b0850>:each>
Carefully examine the return value here. You can think of enum1
as a "compound enumerator". It will generate the following values:
enum1.to_a
#=> [[false, [[1, 0], [1, 1]]], [true, [[2, 2], [2, 3], [2, 4]]],
# [false, [[3, 5], [1, 6], [1, 7], [1, 8], [1, 9]]],
# [true, [[2, 10], [2, 11], [2, 12], [2, 13]]], [false, [[3, 14], [3, 15]]]]
Continuing,
c = enum1.select { |tf,_| tf==true }
#=> [[true, [[2, 2], [2, 3], [2, 4]]],
# [true, [[2, 10], [2, 11], [2, 12], [2, 13]]]]
_,b = c.max_by { |_,a| a.size }
#=> [true, [[2, 10], [2, 11], [2, 12], [2, 13]]]
b #=> [[2, 10], [2, 11], [2, 12], [2, 13]]
b ? [b.size, b.first.last] : nil
#=> [[2, 10], [2, 11], [2, 12], [2, 13]] ? [4, [2,10].last]
#=> [4, 10]
Upvotes: 3
Reputation: 168101
a = [2, 2, 1, 0, 2, 2, 2, 0, 1, 1]
longest_sequence =
a.each_index.select{|i| a[i] == 2}.chunk_while{|i, j| i.next == j}.max_by(&:length)
# => [4, 5, 6]
[longest_sequence.length, longest_sequence.first] # => [3, 4]
Upvotes: 2