Reputation: 1467
I am getting above error when I am running an iteration using FOR loop to build multiple models. First two models having similar data sets build fine. While building third model I am getting this error. The code where error is thrown is when I call sm.logit() using Statsmodel package of python:
y = y_mort.convert_objects(convert_numeric=True)
#Building Logistic model_LSVC
print("Shape of y:", y.shape, " &&Shape of X_selected_lsvc:", X.shape)
print("y values:",y.head())
logit = sm.Logit(y,X,missing='drop')
The error that appears:
Shape of y: (9018,) &&Shape of X_selected_lsvc: (9018, 59)
y values: 0 0
1 1
2 0
3 0
4 0
Name: mort, dtype: int64
ValueError Traceback (most recent call last)
<ipython-input-8-fec746e2ee99> in <module>()
160 print("Shape of y:", y.shape, " &&Shape of X_selected_lsvc:", X.shape)
161 print("y values:",y.head())
--> 162 logit = sm.Logit(y,X,missing='drop')
163 # fit the model
164 est = logit.fit(method='cg')
D:\Anaconda3\lib\site-packages\statsmodels\discrete\discrete_model.py in __init__(self, endog, exog, **kwargs)
399
400 def __init__(self, endog, exog, **kwargs):
--> 401 super(BinaryModel, self).__init__(endog, exog, **kwargs)
402 if (self.__class__.__name__ != 'MNLogit' and
403 not np.all((self.endog >= 0) & (self.endog <= 1))):
D:\Anaconda3\lib\site-packages\statsmodels\discrete\discrete_model.py in __init__(self, endog, exog, **kwargs)
152 """
153 def __init__(self, endog, exog, **kwargs):
--> 154 super(DiscreteModel, self).__init__(endog, exog, **kwargs)
155 self.raise_on_perfect_prediction = True
156
D:\Anaconda3\lib\site-packages\statsmodels\base\model.py in __init__(self, endog, exog, **kwargs)
184
185 def __init__(self, endog, exog=None, **kwargs):
--> 186 super(LikelihoodModel, self).__init__(endog, exog, **kwargs)
187 self.initialize()
188
D:\Anaconda3\lib\site-packages\statsmodels\base\model.py in __init__(self, endog, exog, **kwargs)
58 hasconst = kwargs.pop('hasconst', None)
59 self.data = self._handle_data(endog, exog, missing, hasconst,
---> 60 **kwargs)
61 self.k_constant = self.data.k_constant
62 self.exog = self.data.exog
D:\Anaconda3\lib\site-packages\statsmodels\base\model.py in _handle_data(self, endog, exog, missing, hasconst, **kwargs)
82
83 def _handle_data(self, endog, exog, missing, hasconst, **kwargs):
---> 84 data = handle_data(endog, exog, missing, hasconst, **kwargs)
85 # kwargs arrays could have changed, easier to just attach here
86 for key in kwargs:
D:\Anaconda3\lib\site-packages\statsmodels\base\data.py in handle_data(endog, exog, missing, hasconst, **kwargs)
564 klass = handle_data_class_factory(endog, exog)
565 return klass(endog, exog=exog, missing=missing, hasconst=hasconst,
--> 566 **kwargs)
D:\Anaconda3\lib\site-packages\statsmodels\base\data.py in __init__(self, endog, exog, missing, hasconst, **kwargs)
74 # this has side-effects, attaches k_constant and const_idx
75 self._handle_constant(hasconst)
---> 76 self._check_integrity()
77 self._cache = resettable_cache()
78
D:\Anaconda3\lib\site-packages\statsmodels\base\data.py in _check_integrity(self)
450 (hasattr(endog, 'index') and hasattr(exog, 'index')) and
451 not self.orig_endog.index.equals(self.orig_exog.index)):
--> 452 raise ValueError("The indices for endog and exog are not aligned")
453 super(PandasData, self)._check_integrity()
454
ValueError: The indices for endog and exog are not aligned
The y matrix and X matrix have shape of (9018,),(9018, 59). Therefore any mismatch in dependent and independent variables doesn't appear. Any idea?
Upvotes: 11
Views: 57041
Reputation: 29
ValueError: The indices for endog and exog are not aligned
Above error is basically due to index mismatch in both X & y datasets while cleaning and preparation.
I removed this error by removing the indices of both X & y datasets as: y_train = y_train.reset_index(drop=True) X_train = X_train.reset_index(drop=True)
Pls provide your valuable feedback
Upvotes: 0
Reputation: 11
do y_train.values.ravel()
.
Actually shape of y_train is in 2D array.
So you need to convert it into 1D array.
hope it works for you.
Upvotes: 0
Reputation: 31
This error may also come due to wrong usage of API
Correct:
X_train, X_test, y_train, y_test = train_test_split(
X, y, train_size=0.7, test_size=0.3, random_state=100
)
Incorrect:
X_train, y_train, X_test, y_test = train_test_split(
X, y, train_size=0.7, test_size=0.3, random_state=100
)
Upvotes: 3
Reputation: 21
It may be due to different indices in x
and y
. This may happen when we initially removed some values from dataframe and perform some operations on x
after separating x
and y
. The indices in y
will contain the missing indices from original dataframe while x
will have continuous indices. It's best to do dataframe.reset_index(drop = True)
before separating x
and y
.
Upvotes: 2
Reputation: 2743
The error message indicates that you have endog and exog with different shape. This is common error in python which can be easily solved by using 'reshape' function on dependent variable to align it with independent variable's shape.
y_train.values.reshape(-1,1)
Above lines means:- We have provided column as 1 but rows as unknown i.e. we got a single column with as many rows as X.
Lets take a example:-
z = np.array([[1, 2], [ 3, 4]])
print(z.shape) # (2, 2)
Now we will use reshape(-1,1) function on this array. We can see new array has 4 row and 1 column.
new_z= z.reshape(-1,1)
print(new_z) #array([[1],[2],[3], [4]])
print(new_z.shape) #(4, 1)
Upvotes: 4
Reputation: 4885
Try converting y into a list before the sm.Logit() line.
y = list(y)
Upvotes: 21
Reputation: 2140
Have you checked if you have Nan
in your data? You can use np.isNan(X)
and np.isNan(y)
. I saw you turned on the option drop
so I suspect if you have Nan
in your data then that will change the shape of your input.
Upvotes: 0