Reputation: 1586
I have a DataFrame
of some transactions. I want to group these transactions with respect to their item
and time
column values: the goal is to group items that are within 1 hour of each other. So we start a new group at the time of the next observation that wasn't within an hour of the observation prior (See column start time
in DataFrame
B
).
Here is the data: I want to convert A
to B
.
A=
item time result
A 2016-04-18 13:08:25 Y
A 2016-04-18 13:57:05 N
A 2016-04-18 14:00:12 N
A 2016-04-18 23:45:50 Y
A 2016-04-20 16:53:48 Y
A 2016-04-20 17:11:47 N
B 2016-04-18 15:24:48 N
C 2016-04-23 13:20:44 N
C 2016-04-23 14:02:23 Y
B=
item start time end time Ys Ns total count
A 2016-04-18 13:08:25 2016-04-18 14:08:25 1 2 3
A 2016-04-18 23:45:50 2016-04-18 00:45:50 1 0 1
A 2016-04-20 16:53:48 2016-04-20 17:53:48 1 1 2
B 2016-04-18 15:24:48 2016-04-18 16:24:48 0 1 1
C 2016-04-23 13:20:44 2016-04-23 14:20:44 1 1 2
Here is what I did:
grouped = A.groupby('item')
A['end'] = (grouped['time'].transform(lambda grp: grp.min()+pd.Timedelta(hours=1)))
A2 = A.loc[(A['time'] <= A['end'])]
This gives me one group per day: the transaction within 1 hour of the first transaction. So, I'm missing other transactions in the same day but more than 1 hour apart from the first. My struggle is how to get those groups. I can then use pd.crosstab
to get the details I want from the result
column.
Another idea I have is to sort A
by item
and time
, and then go row by row. If the time is within 1 hour of the previous row, it adds to that group, otherwise, it creates a new group.
Upvotes: 3
Views: 1906
Reputation: 42885
1) Set up a window_end
column for later use with .groupby()
, and define .get_windows()
to check, for each item
group, if a row
fits the current current 1hr window, or do nothing and keep the initialized value. Apply to all item
groups:
df['window_end'] = df.time + pd.Timedelta('1H')
def get_windows(data):
window_end = data.iloc[0].window_end
for index, row in data.iloc[1:].iterrows():
if window_end > row.time:
df.loc[index, 'window_end'] = window_end
else:
window_end = row.window_end
df.groupby('item').apply(lambda x: get_windows(x))
2) Use windows
and item
with .groupby()
and return .value_counts()
as transposed
DataFrame
, clean up index
, and add total
:
df = df.groupby(['window_end', 'item']).result.apply(lambda x: x.value_counts().to_frame().T)
df = df.fillna(0).astype(int).reset_index(level=2, drop=True)
df['total'] = df.sum(axis=1)
to get:
N Y total
window_end item
2016-04-18 14:08:25 A A 2 1 3
2016-04-18 16:24:48 B B 1 0 1
2016-04-19 00:45:50 A A 0 1 1
2016-04-20 17:53:48 A A 1 1 2
2016-04-23 14:20:44 C C 1 1 2
Upvotes: 1
Reputation: 294218
import pandas as pd
from StringIO import StringIO
text = """item time result
A 2016-04-18 13:08:25 Y
A 2016-04-18 13:57:05 N
A 2016-04-18 14:00:12 N
A 2016-04-18 23:45:50 Y
A 2016-04-20 16:53:48 Y
A 2016-04-20 17:11:47 N
B 2016-04-18 15:24:48 N
C 2016-04-23 13:20:44 N
C 2016-04-23 14:02:23 Y
"""
df = pd.read_csv(StringIO(text), delimiter="\s{2,}", parse_dates=[1], engine='python')
I needed to create a few process functions:
def set_time_group(df):
cur_time = pd.NaT
for index, row in df.iterrows():
if pd.isnull(cur_time):
cur_time = row.time
delta = row.time - cur_time
if delta.seconds / 3600. < 1:
df.loc[index, 'time_ref'] = cur_time
else:
df.loc[index, 'time_ref'] = row.time
cur_time = row.time
return df
def summarize_results(df):
df_ = df.groupby('result').count().iloc[:, 0]
df_.loc['total count'] = df_.sum()
return df_
dfg1 = df.groupby('item').apply(set_time_group)
dfg2 = dfg1.groupby(['item', 'time_ref']).apply(summarize_results)
df_f = dfg2.unstack().fillna(0)
print df_f
result N Y total count
item time_ref
A 2016-04-18 13:08:25 2.0 1.0 3.0
2016-04-18 23:45:50 0.0 1.0 1.0
2016-04-20 16:53:48 1.0 1.0 2.0
B 2016-04-18 15:24:48 1.0 0.0 1.0
C 2016-04-23 13:20:44 1.0 1.0 2.0
Upvotes: 1
Reputation: 210822
inspired (+1) by Stefan's solution I came to this one:
B = (A.groupby(['item', A.groupby('item')['time']
.diff().fillna(0).dt.total_seconds()//60//60
],
as_index=False)['time'].min()
)
B[['N','Y']] = (A.groupby(['item', A.groupby('item')['time']
.diff().fillna(0).dt.total_seconds()//60//60
])['result']
.apply(lambda x: x.value_counts().to_frame().T).fillna(0)
.reset_index()[['N','Y']]
)
Output:
In [178]: B
Out[178]:
item time N Y
0 A 2016-04-18 13:08:25 3.0 1.0
1 A 2016-04-18 23:45:50 0.0 1.0
2 A 2016-04-20 16:53:48 0.0 1.0
3 B 2016-04-18 15:24:48 1.0 0.0
4 C 2016-04-23 13:20:44 1.0 1.0
PS the idea is to use A.groupby('item')['time'].diff().fillna(0).dt.total_seconds()//60//60
as a part of grouping:
In [179]: A.groupby('item')['time'].diff().fillna(0).dt.total_seconds()//60//60
Out[179]:
0 0.0
1 0.0
2 0.0
3 9.0
4 41.0
5 0.0
6 0.0
7 0.0
8 0.0
Name: time, dtype: float64
Upvotes: 1